
CS109A Notes for Lecture 2/21/96Type Shorthandstype ILL = int list list;type ILL = int list listfun ilhead(x::xs : ILL) = x;val ilhead = fn : ILL ! int list� Type parameters can go after type.type ('eltype) ELL ='eltype list list;type 'a ELL = 'a list listfun ilhead(x::xs : int ELL) = x;val ilhead = fn : int ELL ! int list� Whole thing is no big deal, just a shorthand.� But the following story, \datatypes," is a ma-jor deal.DatatypesWe may de�ne a new datatype T by specifying oneor more data constructors for T .� The values for T are pre�x expressions thatuse the data constructors as operators and useoperands of the appropriate type(s).Operands may be values for T , or valuesof other types, depending on how T isde�ned.� The declaration of a datatype consists of1. The keyword datatype.2. A parenthesized list of type parameters,as for type declarations.3. An = sign.4. A list of one or more constructor expres-sions separated by bars.� A constructor expression consists of:1

1. A constructor name, usually an indenti-�er beginning with a capital.2. The keyword of.3. A type expression, possibly involving thetype parameters.(2) and (3) are optional, but normal.Example: The simplest examples look like enu-merated types, e.g.datatype buildingMaterials =Straw | Wood | Brick;datatype buildingMaterialscon Strawcon Woodcon Brick� Its values are nothing more than the 3 dataconstructors, e.g., Straw.Example: Datatypes can simulate C's uniontypes, but the values are each wrapped in an ap-propriate data constructor, to tell what kind it is.datatype rori =Int of int |Real of real;datatype roricon Int : int ! roricon Real : real ! rori� Values of datatype rori include Int(23),Real(23:0), and Real(2:34).� Note the ML description of data constructorsmakes them look as if they were functions.That makes sense, since a data constructordoes take values as \arguments" and producesa new value.� Data constructors can appear naturally inpatterns of functions.fun getReal(Int(i)) = real(i)| getReal(Real(r)) = r;val getReal = fn : rori ! real2

An Expression TypeHere is a datatype that de�nes expressions involv-ing sets and the operators [and \.datatype 'elt Set =Union of 'elt Set * 'elt Set |Inter of 'elt Set * 'elt Set |Op of 'elt list;datatype 'a Setcon Inter : 'a Set * 'a Set ! 'a Setcon Op : 'a list ! 'a Setcon Union : 'a Set * 'a Set ! 'a SetValues of the datatype Set may be thought of asexpressions.Basis: Set represented by the data constructorOp (operand) and a list of the elements of the set.� Elements are of some type 'elt, e.g., integers.Induction: The data constructors Union and In-ter take two set expressions as arguments to cre-ate the obvious expressions.Example: The value of datatype Set:val set1 = Union(Op([1,2,3]),Inter(Op([2,3,4]), Op([4,5,6])));val set1 = Union (Op [1,2,3],Inter (Op #,Op #)) : int Setrepresents the set-expressionf1; 2; 3g [(f2; 3; 4g \ f4; 5; 6g)Here is a function that tests whether an elementx is a member of the set denoted by some set ex-pression.fun member(x,Op(nil)) = false| member(x,Op(y::ys)) =if x=y then trueelse member(x,Op(ys))| member(x,Union(s,t)) =member(x,s) orelse member(x,t)| member(x,Inter(s,t)) =member(x,s) andalso member(x,t);val member = fn : "a * "a Set ! boolmember(4,set1);val it = true : bool3

