CS109A Notes for Lecture 2/21/96

Type Shorthands

type ILL = int list list;
type ILL = int list list

fun ilhead(x::xs : ILL) = x;
val ilhead = fn : ILL — int List

e Type parameters can go after type.
type (’eltype) ELL =
'eltype list list;
type ’a ELL = ’a list list
fun ilhead(x::xs : int ELL) = x;
val ilhead = fn : int ELL — int list
e Whole thing is no big deal, just a shorthand.
e But the following story, “datatypes,” is a ma-
jor deal.
Datatypes

We may define a new datatype T by specifying one

or more data constructors for T.

The values for T are prefix expressions that
use the data constructors as operators and use
operands of the appropriate type(s).

O Operands may be values for T, or values
of other types, depending on how T is
defined.

The declaration of a datatype consists of
1. The keyword datatype.

2. A parenthesized list of type parameters,
as for type declarations.

3. An = sign.

4. A list of one or more constructor expres-
sions separated by bars.

A constructor expression consists of:

1. A constructor name, usually an indenti-
fier beginning with a capital.

2. The keyword of.

3. A type expression, possibly involving the
type parameters.

O (2) and (3) are optional, but normal.

Example: The simplest examples look like enu-
merated types, e.g.

datatype buildingMaterials =
Straw | Wood | Brick;

datatype buildingMaterials

con Straw

con Wood

con Brick

o Its values are nothing more than the 3 data
constructors, e.g., Straw.

Example: Datatypes can simulate C’s union
types, but the values are each wrapped in an ap-
propriate data constructor, to tell what kind it is.

datatype rori =
Int of int |
Real of real;

datatype rori

con Int : int — ror:

con Real : real — rori

e Values of datatype rori include Int(23),
Real(23.0), and Real(2.34).

e Note the ML description of data constructors
makes them look as if they were functions.
That makes sense, since a data constructor
does take values as “arguments” and produces
a new value.

e Data constructors can appear naturally in
patterns of functions.

fun getReal(Int(i)) = real(i)
| getReal(Real(r)) = r;
val getReal = fn : rori — real

An Expression Type

Here is a datatype that defines expressions involv-
ing sets and the operators U and N.

datatype ’elt Set =
Union of ’elt Set * ’elt Set |
Inter of ’elt Set * ’elt Set |
Op of ’elt list;
datatype ’a Set
con Inter : ’a Set * ’a Set — ’a Set
con Op : ’a list — ’a Set
con Union : ’a Set * ’a Set — ’a Set

Values of the datatype Set may be thought of as
expressions.

Basis: Set represented by the data constructor
Op (operand) and a list of the elements of the set.

o Elements are of some type ’elt, e.g., integers.

Induction: The data constructors Union and In-
ter take two set expressions as arguments to cre-
ate the obvious expressions.

Example: The value of datatype Set:

val setl = Union(0p([1,2,3]),
Inter(0p([2,3,4]), 0p([4,5,61)));
val set! = Union (Op [1,2,3],Inter (Op #,0p #)) : int Set

represents the set-expression
{1,2,3} U ({2,3,4} N {4,5,6})

Here is a function that tests whether an element
z is a member of the set denoted by some set ex-
pression.

fun member(x,0p(nil)) = false
| member (x,0p(y::ys)) =
if x=y then true
else member(x,0p(ys))
| member (x,Union(s,t)) =
member(x,s) orelse member(x,t)
| member (x,Inter(s,t)) =
member(x,s) andalso member(x,t);

val member = fn : "a * ”a Set — bool

member (4,setl);
val it = true : bool

