
CS109A ML Notes for 3/6/96Maintaining a StateML dictions learned so far do not allow us tochange the value of variables as a side-e�ect offunction evaluation. Here are two ways to do so:1. Arrays. Essentially 1-dimensional arrays asin C.2. References. Something like a pointer to avariable, allowing the value of that variableto change.ArraysFirst, to use arrays at all, you have to open a spe-cial module named Array. The ML statement todo so isopen Array;ML responds with the available functions. Themost important:� val A = array(n,v); makes A an array in-dexed by 0; 1; : : : n�1. Initially, each elementholds value v.We must be able to determine the exacttype of v at this moment; e.g., nil is nota suitable value, but nil:int list is.� sub(A,i) returns the value of A[i].� update(A,i,v); is like A[i] = v in C. It re-turns the unit.Example: This is an extended example of an MLprogram to heapify an array.open Array;(List of all functions, etc., in Array)val MAX = 100;val MAX = 100 : intval A1 = array(MAX+1,0);val A1 = [j0,0,0,0,0,0,0,0,0,0,0,0,...j] : int array1



The above makes arrays available, sets MAX to thelargest number of elements we'll tolerate in a heap,and then creates an array A1 to serve as a heap.� Note that because A[0] is not used, we needMAX+1 elements.� Initially all elements are 0, and ML can inferthat the type of elements is int.fun swap(i,j,A) =let val Ai = sub(A,i);val Aj = sub(A,j);in (update(A,i,Aj); update(A,j,Ai))end;val swap = fn : int * int array ! unitThe above swaps A[i] with A[j] by:� Copy A[i] and A[j] into variables Ai and Aj.� Execute two update statements that setA[i] = Aj and then A[j] = Ai.A swap using a single temp is possible,mimicking Fig. 5.46, FCS.fun bubbleUp(i,A) =if i<=1 then ()elselet val i2 = i div 2;in if (sub(A,i):int) > sub(A,i2) then(swap(i,i2,A); bubbleUp(i2,A))else ()end;val bubbleUp = fn : int * int array ! unitbubbleUp(i; A) bubbles A[i] as far forward in thearray as it will go.� If i = 1, we are done.� Otherwise, compare A[i] with A[i=2]. If theformer is larger, swap and continue bubblingup. 2



� Otherwise, just return the unit.fun heapify(nil,A,n) = A| heapify(x::xs,A,n) = (update(A,n,x);bubbleUp(n,A);heapify(xs,A,n+1));val heapify = fn : int list * int array ! int arrayheapify(L;A; n) inserts a list L of elements intoarray A, starting at A[n], and heapi�es as it goes,assuming A was a heap to begin with.heapify([1,2,3,4,5,6,7,8,9,10], A1, 1);val it = [j0,10,9,6,7,8,2,5,1,4,3,0,...j] : int arrayThis is a sample call, putting integers 1 through10 into an empty array A1.ReferencesML allows a variable to be declared a reference tovalues of some type T .� There are limits on the acceptable types, butnonfunction types T are OK.� Unlike other ML types, it is possible to changethe value to which a ref variable refers.� Declare a reference variable by:val s = ref "foo";val s = ref "foo" : string ref� Change the value referred to by:s := "bar";val it = () : units;val s = ref "bar" : string ref� Access the value of a ref variable by the deref-erencing operator ! .!s;val it = "bar" : stringWhile-Do LoopsAn e�ective way to use ref variables.3



� Same idea as while-loops in C.Example: Assuming module Array is open, wecan create an array of ten integers and initializeA[i] to i2 as follows.val i = ref 0;val i = ref 0 : int refval A = array(10,0);val A = [j0,0,0,0,0,0,0,0,0,0j] : int arraywhile !i < 10 do (update(A, !i, (!i)*(!i));i := !i + 1);val it = () : unitA;val it = [j0,1,4,9,16,25,36,49,64,81j] : int array� You might think that you could use val toassign new values to variables, but it is illegalto do so in the expression after a do (or in anybut a few contexts such as a let-statement).� The following is illegal and results in a syntaxerror:(* ILLEGAL CODE *)val A = array(10,0);val i = 0;while i < 10 do (update(A, i, i*i);val i = i + 1);Error: syntax error found at VALWhy does ML refuse to provide a feature that\makes sense"?� Allowing indescriminate assignments in themiddle of execution would make it impossi-ble for ML to discover types when it compilesyour program.You would lose the bene�ts, notably se-mantic errors could no longer be caughtat compile-time.4


