
CS109B ML Notes for the Week of 4/17/95Record TypesA set of �eld names and their associated types,surrounded by curly braces.Example: The triples that we needed forProject 2 in CS109A (cash if out of the marketand stock/cash if in) could be given the typetype stockRec ={cash out: int, stock in: int, cash in: int};� But di�erent �elds could have di�erent types.Record ValuesA set of �eld names, each followed by = and a valueof appropriate type. All are surrounded by curlybraces.Example: A possible value of type stockRec isval myRec ={cash out=500, stock in=15, cash in=10};Extracting Field ValuesThe expression #f(r) returns the value of �eld fof record r.Example:#stock in(myRec);val it = 15 : intTuples and RecordsAn ugly little secret: tuples are just a shorthandfor a record structure in which the �elds are named1, 2, etc.� That's why #i(t) extracts the ith componentfrom a tuple t.Deducing a Record TypeML cannot assume that the only �elds a record hasare the ones it sees. Thus, the following attemptto decide whether we are better o� in or out is1



erroneous.(* decide(r,v) determines if the cash-if-out in recordr exceeds the value of the stock-and-cash-in, assumingv is the stock price *)fun decide(r,v) =#cash in(r) > v*#stock in(r) + #cash in(r);Error: unresolved 
ex record in let patterntype: f cash in:'Y, cash out:'Y, stock in:'Y,' ...Zmore errors . . .� The problem is that ML doesn't know theseare the only �elds of r.� Fix by declaring the type of r somewhere, e.g.,fun decide(r:stockRec,v) =#cash in(r) > v*#stock in(r) + #cash in(r);val decide = fn : stockRec * int ! boolEllipsesWhen writing patterns involving record types, wemay specify the �elds in any order. We may alsoomit some �elds by using the ellipsis or wildcardsymbol, ... .� But remember that ML must be able to �gureout the full set of �elds somehow.Example: A function that tests if an \in" posi-tion leaves no cash left over:fun noCash({cash in=0,...}:stockRec) = true| noCash( ) = false;� The type stockRec is su�cient to tell MLwhat the �elds are.MatchesA match is an expression consisting of one or moresubexpressionspattern => expressionseparated by bars.� A match M is applied to a value v. The �rstpattern that matches the value determinesthe result as follows:2



First, any variables in the pattern arebound to values they match in v.Then the associated expression, whichmay involve variables of the patern, isevaluated, yielding the value of M ap-plied to v.Example: Here is a match that tells if a list haszero, one, two, or many elements:nil => "zero" |[x] => "one" |[x,y] => "two" |=> "many"� Warning: the above is not an expression; it isused within expressions.Using MatchesA match M can be used to:1. De�ne anonymous functions. val f = fn Mde�nes f to be a function that applies M toits argument.OK; so now fn M is no longer \anony-mous," but the point is you can usefn M any place a function of the ap-propriate type is expected, without �rstcalling it f .Example:val f = fnnil => "zero" |[x] => "one" |[x,y] => "two" |=> "many"f([1,2]);val it = "two" : string2. Match M can be used in a case statement.case v of M causes M to be applied to v.3



Example:fun f(x) = case x ofnil => "zero" |[x] => "one" |[x,y] => "two" |=> "many"

4


