CS109B ML Notes for the Week of 4/17/95

Record Types

A set of field names and their associated types,
surrounded by curly braces.

Example: The triples that we needed for
Project 2 in CS109A (cash if out of the market
and stock/cash if in) could be given the type

type stockRec =

{cash out: int, stock_in: int, cash_in:

e But different fields could have different types.

Record Values

A set of field names, each followed by = and a value
of appropriate type. All are surrounded by curly
braces.

Example: A possible value of type stockRec is

val myRec =

{cash_out=500, stock_in=15, cash_in=10};

Extracting Field Values

The expression #f(r) returns the value of field f
of record r.

Example:
#stock_in(myRec);
val it = 15 : int

Tuples and Records

An ugly little secret: tuples are just a shorthand
for a record structure in which the fields are named
1, 2, etc.

° That’s why #1(¢) extracts the ith component
from a tuple ¢.
Deducing a Record Type

ML cannot assume that the only fields a record has
are the ones it sees. Thus, the following attempt
to decide whether we are better off in or out is

int};

€rromneous.

(* decide(r,v) determines if the cash-if-out in record
r exceeds the value of the stock-and-cash-in, assuming
v is the stock price *)
fun decide(r,v) =
#cash_in(r) > v*#stock_in(r) + #cash_in(r);
Error: unresolved flex record in let pattern
type: { cash_in:’Y, cash_out:’Y, stock_in:’Y,” ...Z
more errors . . .

e The problem is that ML doesn’t know these
are the only fields of r.

o Fix by declaring the type of r somewhere, e.g.,

fun decide(r:stockRec,v) =
#cash_in(r) > v*#stock_in(r) + #cash_in(r);
val decide = fn : stockRec * int — bool

Ellipses

When writing patterns involving record types, we
may specify the fields in any order. We may also
omit some fields by using the ellipsis or wildcard
symbol,

¢ But remember that ML must be able to figure
out the full set of fields somehow.

Example: A function that tests if an “in” posi-
tion leaves no cash left over:

fun noCash({cash_in=0,...}:stockRec) = true
| noCash(_) = false;

e The type stockRec is sufficient to tell ML
what the fields are.

Matches

A matchis an expression consisting of one or more
subexpressions

pattern => expression
separated by bars.

e A match M is applied to a value v. The first
pattern that matches the value determines
the result as follows:

O First, any variables in the pattern are
bound to values they match in v.

0 Then the associated expression, which
may involve variables of the patern, is
evaluated, yielding the value of M ap-
plied to v.

Example: Here is a match that tells if a list has
zero, one, two, or many elements:

nil => "zero" |
[x] => "one" |
[x,y] => "two" |
_ => "many"

e Warning: the above is not an expression; it is
used within expressions.

Using Matches

A match M can be used to:

1. Define anonymous functions. val £ = fan M
defines f to be a function that applies M to
its argument.

O OK; so now fn M is no longer “anony-
mous,” but the point is you can use
fn M any place a function of the ap-
propriate type is expected, without first
calling it f.

Example:
val £ = £fn
nil => "zero" |
[x] => "one" |
[x,y] => "two" |
_ => "many"
£([1,2]);

val it = "two” : string

2. Match M can be used in a case statement.
case v of M causes M to be applied to v.

3

Example:

fun f(x) = case x of

nil => "zero" |
[X] => "one" |
[X,y] => "tyo! |

_ => "manyn

