
CS109A Notes for Lecture 3/11/96SubstringsIn ML notation, x is a substring of y if y = u^x^vfor some strings u and v.� Similar notion for lists, i.e., y = u@x@v.Example: The substrings of aba are � (the emptystring), a, b, ab, ba, and aba.� Note that a substring need not be proper (i.e.,less than the whole string).� Special case: pre�x of y is any substring xthat begins at the beginning of y.Example: Pre�xes of aba are �, a, ab, and aba.� Special case: su�x of y is a substring thatends at the end of y.Example: Su�xes of aba are �, a, ba, and aba.SubsequencesA subsequence of a string y is what we can obtainby striking out 0 or more of the positions of y.Example: Subsequences of aba are �, a, b, ab, ba,aa, aba.� A common subsequence of x and y is a stringthat is a subsequence of both.� A longest common subsequence (LCS) of xand y is a common subsequence of x and ythat is as long as any common subsequenceof these strings.Why LCS's?� Secret of the UNIX diff command (�nd thedi�erences between two �les).diff �nds a LCS of the two �les and as-sumes the changes are \everything else."� Generalizations important in matching ofDNA sequences. 1

An Exponential LCS AlgorithmThe following assumes two lists (not strings) andcomputes their LCS:fun lcs(,nil) = nil| lcs(nil,) = nil| lcs(x::xs, y::ys) =if x=y then x::lcs(xs,ys)else letval l1 = lcs(xs, y::ys);val l2 = lcs(x::xs, ys);in if length(l1) > length(l2)then l1else l2end;� Problem: If size n = sum of the lengths of thelists, then there are two recursive calls to lcson arguments of one smaller size.Leads to recurrence relation T (n) =O(n) + 2T (n� 1), with solution O(2n).Dynamic Programming SolutionRecursions like this waste time because they windup solving the same problem repeatedly.Example: If x = [1; 2; 3; 4] and y = [a; b; c; d], wecall lcs twice on ([2; 3; 4]; [b; c; d]), four times on([3; 4]; [c; d]) , and so on.� Dynamic programming solutions tabulate theanswers to subproblems, so they are availablefor use many times.Example: The most common example is com-puting �nm� by the recursion �nm� = �n�1m�1�+ �n�1m �vs. computing it by Pascal's triangle (see p. 172,FCS).� For LCS, build an array L such that L[i][j] isthe length of the LCS for the �rst i positionsof x and the �rst j positions of y.Given this array, �lled in, one can easilyrecover an LCS | see p. 324 �, FCS.2

� Fill in order of i + j.Basis: i+ j = 0. Surely L[0][0] = 0.Induction:� If either i or j is 0, then L[i][j] = 0.� If neither is 0, consider ai and bj, the ith andjth elements of strings x and y, respectively.If ai = bj, L[i][j] = 1 + L[i� 1][j � 1].Otherwise, L[i][j] is the larger ofL[i][j � 1] and L[i� 1][j].� Either way, the L entries needed have alreadybeen computed.Running Time of LCSIf n = sum of lengths of strings, time is O(n2).� Fill (n + 1)2 entries, each in O(1) time.

3

