CS109A Notes for Lecture 3/11/96

Substrings

In ML notation, x is a substring of y if $y = u^x^v$ for some strings u and v.

• Similar notion for lists, i.e., y = u@x@v.

Example: The substrings of aba are ϵ (the empty string), a, b, ab, ba, and aba.

- Note that a substring need not be *proper* (i.e., less than the whole string).
- Special case: prefix of y is any substring x that begins at the beginning of y.

Example: Prefixes of aba are ϵ , a, ab, and aba.

• Special case: suffix of y is a substring that ends at the end of y.

Example: Suffixes of aba are ϵ , a, ba, and aba.

Subsequences

A subsequence of a string y is what we can obtain by striking out 0 or more of the positions of y.

Example: Subsequences of aba are ϵ , a, b, ab, ba, aa, aba.

- A common subsequence of x and y is a string that is a subsequence of both.
- A longest common subsequence (LCS) of x and y is a common subsequence of x and y that is as long as any common subsequence of these strings.

Why LCS's?

- Secret of the UNIX diff command (find the differences between two files).
 - diff finds a LCS of the two files and assumes the changes are "everything else."
- Generalizations important in matching of DNA sequences.

An Exponential LCS Algorithm

The following assumes two lists (not strings) and computes their LCS:

```
fun lcs(_,nil) = nil
lcs(nil,_) = nil
lcs(x::xs, y::ys) =
if x=y then x::lcs(xs,ys)
else let
   val l1 = lcs(xs, y::ys);
  val l2 = lcs(x::xs, ys);
in
  if length(l1) > length(l2)
    then l1
  else l2
end;
```

- Problem: If size n = sum of the lengths of the lists, then there are two recursive calls to **lcs** on arguments of one smaller size.
 - Leads to recurrence relation T(n) = O(n) + 2T(n-1), with solution $O(2^n)$.

Dynamic Programming Solution

Recursions like this waste time because they wind up solving the same problem repeatedly.

Example: If x = [1, 2, 3, 4] and y = [a, b, c, d], we call **1cs** twice on ([2, 3, 4], [b, c, d]), four times on ([3, 4], [c, d]), and so on.

• Dynamic programming solutions tabulate the answers to subproblems, so they are available for use many times.

Example: The most common example is computing $\binom{n}{m}$ by the recursion $\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$ vs. computing it by Pascal's triangle (see p. 172, FCS).

- For LCS, build an array L such that L[i][j] is the length of the LCS for the first i positions of x and the first j positions of y.
 - Given this array, filled in, one can easily recover an LCS see p. 324 ff, FCS.

• Fill in order of i + j.

Basis: i + j = 0. Surely L[0][0] = 0.

Induction:

- If either i or j is 0, then L[i][j] = 0.
- If neither is 0, consider a_i and b_j , the *i*th and *j*th elements of strings x and y, respectively.
 - \Box If $a_i = b_j$, L[i][j] = 1 + L[i-1][j-1].
 - $\begin{tabular}{ll} \square & Otherwise, $L[i][j]$ is the larger of $L[i][j-1]$ and $L[i-1][j]$. \\ \end{tabular}$
- Either way, the *L* entries needed have already been computed.

Running Time of LCS

If $n = \text{sum of lengths of strings, time is } O(n^2)$.

• Fill $(n+1)^2$ entries, each in O(1) time.