CS109A Notes for Lecture 3/11/96

Substrings

In ML notation, x is a substringof y if y =« "z v
for some strings u and v.

e Similar notion for lists, i.e., y = u@QrQu.

Example: The substrings of aba are € (the empty
string), a, b, ab, ba, and aba.

e Note that a substring need not be proper (i.e.,
less than the whole string).

e Special case: prefiz of y is any substring =
that begins at the beginning of y.

Example: Prefixes of aba are ¢, a, ab, and aba.

e Special case: suffir of y is a substring that
ends at the end of y.

Example: Suffixes of aba are €, a, ba, and aba.

Subsequences

A subsequence of a string y is what we can obtain
by striking out 0 or more of the positions of y.

Example: Subsequences of aba are €, a, b, ab, ba,
aa, aba.

o A common subsequence of ¥ and y is a string
that is a subsequence of both.

e A longest common subsequence (LCS) of x
and y is a common subsequence of x and y
that is as long as any common subsequence
of these strings.

Why LCS’s?

° Secret of the UNIX diff command (find the
differences between two files).

O diff finds a LCS of the two files and as-
sumes the changes are “everything else.”

o  Generalizations important in matching of
DNA sequences.



An Exponential LCS Algorithm

The following assumes two lists (not strings) and
computes their LCS:

fun les(_,nil) = nil
| lcs(nil, ) = nil
| lecs(x::xs, y::ys) =
if x=y then x::lcs(xs,ys)
else let
val 11 = lcs(xs, y::ys);

val 12 = lcs(x::xs, ys);
in
if length(l1l) > length(12)
then 11
else 12
end;

e Problem: If size n = sum of the lengths of the
lists, then there are two recursive calls to 1cs
on arguments of one smaller size.

O Leads to recurrence relation T(n) =

O(n) 4+ 27 (n — 1), with solution O(2™).

Dynamic Programming Solution

Recursions like this waste time because they wind
up solving the same problem repeatedly.

Example: If # =[1,2,3,4] and y = [a,b, ¢, d], we
call 1cs twice on ([2,3,4], [b,¢,d]), four times on

([3,4], [e,d]) , and so on.

o  Dynamic programming solutions tabulate the
answers to subproblems, so they are available
for use many times.

Example: The most common example is com-
puting (;’;) by the recursion (;’;) = (Z:D + (”ﬂ;l>

vs. computing it by Pascal’s triangle (see p. 172,
FCS).

e For LCS, build an array L such that L[i][j] is
the length of the LCS for the first ¢ positions
of x and the first j positions of .

O  Given this array, filled in, one can easily

recover an LCS — see p. 324 ff; FCS.



Fill in order of 7 + j.

Basis: i + j = 0. Surely L[0][0] = 0.

Induction:

If either 7 or j is 0, then L[{][j] = 0.

If neither is 0, consider a; and b;, the 7th and
jth elements of strings x and y, respectively.

O Ifa; =b;, Lli][j] = 1+ L[i — 1][j — 1].

O  Otherwise, Ll[i][j] is the larger of
LIl — 1] and L — 1]}

Either way, the L entries needed have already
been computed.

Running Time of LCS

If n = sum of lengths of strings, time is O(n?).

Fill (n + 1)2 entries, each in O(1) time.



