CS109A Notes for Lecture 3/8/95

Properties of Binary Relations

1. Symmetry: aRb implies bRa.

Example: Define aR_1b iff a + b is divisible by 3. R_1 is symmetric.

Example: The empty relation is symmetric.

- Remember, any statement "A implies B" is true when A is false.
- 2. Transitivity: aRb and bRc imply aRc.

Example:

- < on integers is transitive.
- So is the empty relation.
- R_1 is not transitive. e.g., $2R_11$ and $1R_15$, but $2R_15$ is false.
 - □ Note: a single counterexample proves a relation doesn't have a certain property, but a general proof is needed to show it does.
- 3. Reflexivity: aRa for all a in the (declared) domain of R.

Example:

- \bullet \leq on integers is reflexive.
- \bullet < is not.
- The empty relation is not reflexive unless the declared domain is empty.
- 4. Antisymmetry: aRb and bRa imply a = b.

Example:

- \leq and < on integers are both antisymmetric.
- R_1 is not; e.g., $1R_12$ and $2R_11$.
- 5. Comparability: For any a and b in the declared domain of R, at least one of aRb and bRa holds.

Example:

- \leq on integers is comparable.
- < is not, because of the possibility a = b.
- R_1 is not; e.g., neither $2R_13$ nor $3R_12$.

Partial Orders

A relation that is transitive and antisymmetric.

Example: \leq or < on integers.

Example: The subsets of a given set A form a partial order.

- Transitivity: If $B \subseteq C$ and $C \subseteq D$, then $B \subseteq D$.
- Antisymmetry: If $B \subseteq C$ and $C \subseteq B$, then B = C.

Example: C = "component of" on auto parts, e.g. tireCwheel, nutCwheel, wheelCcar, nutCengine, pistonCengine.

Total Orders

Comparable partial order.

Example:

- \leq or < on integers.
- Not \subseteq on subsets of A, as long as A has at least two members.
 - \square e.g., if $A = \{0,1\}$, neither $\{0\} \subseteq \{1\}$ nor $\{1\} \subseteq \{0\}$ is true.
- Not "component of."
 - ☐ For example, neither wheelCengine nor engineCwheel are true.

Equivalence Relations

Reflexive, symmetric, transitive.

Example: Common example: congruence modulo m.

- i.e., iEj iff i and j have the same remainder when divided by m.
- Be careful how remainders are computed for negative numbers. The remainder is how much must be subtracted from i to reach a multiple of m.

Equivalence Classes

If E is an equivalence relation, we can partition the domain of E into sets called *equivalence classes* such that:

- aEb if and only if a and b are in the same equivalence class.
- Proof on p. 393 FCS that this definition makes sense, i.e., it is possible to partition the domain of an equivalence relation in this way.

Example: If E is congruence modulo m, the equivalence classes are the m sets of integers with common remainders, e.g., $\{0, m, 2m, \ldots\}$, $\{1, m + 1, 2m + 1, \ldots\}$, etc.

• Each set also includes negative integers.

Example: Balanced parenthesis strings can be defined as those strings of parens that

- 1. Have an equal number of left and right parens.
- 2. No prefix has more right parens than left.
- Good model of problem in compiling: Scan a string of parens left-to-right and determine whether it is balanced.
 - ☐ Equivalence-relation question: how much do we have to remember about the string as we scan it?
- Define sEt if strings s and t have the property that for all strings x, sx is balanced iff tx is balanced.

- i.e., all we have to remember about the string is what equivalence class it belongs in.
- Easy to check E is an equivalence relation, e.g., transitivity: "sx is balanced iff tx is balanced" and "tx is balanced iff rx is balanced" imply "sx is balanced iff rx is balanced."
- What are equivalence classes?
 - 1. There is one class of "dead" strings. they have had a point with more right parens than left, so no continuation can lead to a balanced string.
 - 2. For each i there is a class C_i of strings with i more left parens, and no prefix whose right parens exceed the left.
- If $i \neq j$, then choosing $x =)) \cdots)$ (*i* parens) leads to balance for any string in C_i , but no string in C_j .
 - ☐ Thus, strings in different classes cannot be equivalent.
- If s and t are both in C_i , and x is a string such that sx is balanced, then tx is also balanced. Why?
 - ☐ Thus, all strings in the same class are equivalent.
- Conclusion: it is sufficient, when recognizing balanced strings, to record:
 - a) Has the difference of left-parens minus right-parens ever gone negative?
 - b) If not, what is the current difference?