CS109A Notes for Lecture 3/8/95

Properties of Binary Relations
1.  Symmetry: aRb implies bRa.
Example: Define aR;b iff a + b is divisible by 3.

R, is symmetric.
Example: The empty relation is symmetric.

¢ Remember, any statement “A implies B” is
true when A is false.

2.  Transitivity: aRb and bRc imply aRc.
Example:

e < on integers is transitive.

e Sois the empty relation.

e R, isnot transitive. e.g., 2R;1 and 1R;5, but
2R5 is false.

0 Note: a single counterexample proves a
relation doesn’t have a certain property,
but a general proof is needed to show it
does.

3.  Reflezivity: aRa for all a in the (declared)

domain of R.
Example:
e < on integers is reflexive.
e < is not.

e The empty relation is not reflexive unless the
declared domain is empty.

4. Antisymmetry: aRb and bRa imply a = b.
Example:

¢ < and < on integers are both antisymmetric.
¢ R;isnot;e.g., 1R;2 and 2R;1.

5. Comparability: For any a and b in the de-
clared domain of R, at least one of aRb and

bRa holds.



Example:
e < on integers is comparable.
e < is not, because of the possibility a = b.

e R, is not; e.g., neither 2R;3 nor 3R;2.

Partial Orders
A relation that is transitive and antisymmetric.
Example: < or < on integers.

Example: The subsets of a given set A form a
partial order.

o Transitivity: If B C C and C C D, then
B CD.

o Antisymmetry: If B C C and C C B, then
B=C.

Example: (C = “component of” on auto
parts, e.g. tireCwheel, nutCwheel, wheelCcar,
nutCengine, pistonCengine.

Total Orders
Comparable partial order.
Example:

e < or < on integers.

e Not C on subsets of A, as long as A has at
least two members.

O eg.,if A=4{0,1}, neither {0} C {1} nor
{1} C {0} is true.

e Not “component of.”

O For example, neither wheelCengine nor
engineCwheel are true.

Equivalence Relations
Reflexive, symmetric, transitive.

Example: Common example: congruence mod-
ulo m.



e ., 1FEjiff 1 and 5 have the same remainder
when divided by m.

e Be careful how remainders are computed for
negative numbers. The remainder is how
much must be subtracted from 7 to reach a
multiple of m.

O e.g., —5mod3 =1, although 5 mod 3 =
2.

Equivalence Classes

If E is an equivalence relation, we can partition
the domain of F into sets called equivalence classes
such that:

e aFb if and only if @ and b are in the same
equivalence class.

o Proof on p. 393 FCS that this definition
makes sense, i.e., it is possible to partition
the domain of an equivalence relation in this
way.

Example: If E is congruence modulo m, the
equivalence classes are the m sets of integers with
common remainders, e.g., {0,m,2m,...}, {1,m +
1,2m +1,...}, etc.

o Each set also includes negative integers.

Example: Balanced parenthesis strings can be
defined as those strings of parens that

1. Have an equal number of left and right parens.
2. No prefix has more right parens than left.

¢ Good model of problem in compiling: Scan
a string of parens left-to-right and determine
whether it is balanced.

O Equivalence-relation question: how much
do we have to remember about the string
as we scan it?

o Define sEtif strings s and £ have the property
that for all strings z, sz is balanced iff {z is
balanced.



O i.e., all we have to remember about the
string is what equivalence class it belongs
in.

Easy to check F is an equivalence relation,
e.g., transitivity: “sz is balanced iff {z is bal-
anced” and “tz is balanced iff rz is balanced”
imply “sz is balanced iff rz is balanced.”

What are equivalence classes?

1.  There is one class of “dead” strings. they
have had a point with more right parens
than left, so no continuation can lead to
a balanced string.

2.  For each ¢ there is a class C; of strings
with ¢ more left parens, and no prefix
whose right parens exceed the left.

If ¢+ # j, then choosing ¢ =))---) (i parens)
leads to balance for any string in C;, but no
string in C}.

O Thus, strings in different classes cannot
be equivalent.

If s and ¢ are both in C;, and « is a string such
that sz is balanced, then tz is also balanced.

Why?

OO0 Thus, all strings in the same class are
equivalent.

Conclusion: it is sufficient, when recognizing
balanced strings, to record:

a) Has the difference of left-parens minus
right-parens ever gone negative?

b) If not, what is the current difference?



