
CS109B Notes for Lecture 4/10/95Depth-First Search� A method of exploring a directed graph andnumbering the nodes.� Many useful properties | stay tuned.The DFS Algorithm1. \unmark" all nodes.2. Pick a start node v0 and execute the recursivefunction dfs(v0).3. dfs(u) = for each successor v of u that is un-marked:a) Mark v.b) Call dfs(v).(Do nothing if v was already marked.)Depth-First Search TreeIf dfs(v) is called by dfs(u), then make u ! v atree edge with u the parent.� Add children of a node in order, from the left.Example: ab cd eOther ArcsThe other arcs of the graph fall into 3 groups:1. Forward arcs: ancestor-to-proper-descendant2. Backward arcs: descendant-to-not-necessar-ily-proper-ancestor.3. Cross arcs: right-to-left only.1



abed cBackward Forward
Crossleft-to-right impossible | see FCS,pp. 488{489.DFS ForestIf some nodes not included in �rst tree, start againfrom some unmarked node.� Result is a sequence of trees, ordered left-to-right in order of creation = depth-�rst searchforest.� Note arcs between trees must go right-to-left.These are considered cross arcs.Example: bed c aBackward Cross1 234 5

CrossCrossPostorder NumberingWe may number nodes in the order that dfs �n-ishes on the node. 2



Example: Figure above shows postorder num-bers for this DFSF.Postorder Numbers and Arcs TypesIf u ! v is an arc, then the postorder number ofu is the postorder number of v unless u! v is abackward arc.� FCS, pp. 493{4 explains why.Running TimeDFS takes time at each node u proportional to thenumber of successors of u, plus O(1) in case thereare no successors.� Thus, total time is O(n) for reaching eachnode, plus O(m) for examining successors ofall nodes.Important trick: e�orts at di�erentnodes varies, but total is proportional tonumber of arcs. (Details: FCS, p. 491.)Since n � m, total is O(m), i.e., propor-tional to size of data.Why Depth-First Search?A number of important algorithms are based ondepth-�rst search.� Acyclicity and topological sorting (in class).� Finding connected components (FCS, p. 499).� More advanced, very e�cient algorithms for:Planarity testing: can a graph be drawnin the plane with no crossing edges? (im-portant for integrated circuit layout, e.g.)Strong components: equivalence classesin directed graph de�ned by uEv i� thereare paths from u to v and back.Biconnected components: equivalenceclasses in an undirected graph de�ned byuEv i� u = v or u and v are on a commonsimple cycle. (important for \survivable"3



networks = loss of an edge cannot discon-nect nodes)Testing For CyclesA graph is acyclic if it has no cycles.1. Create a DFSF.2. Look at all arcs to see if they are backward.Easy: just see if the head � tail.� If a backward arc, surely a cycle.� If no backward arc, then surely no cycle.Proof: consider the postorder numbers ofnodes on such a cycle. All arcs decreasethe number, but the sum of changesaround the cycle would have to be 0.Topological SortingGiven an acyclic graph, �nd a topological order-ing of the nodes so that all arcs have their tailpreceding their head.� The reverse of postorder serves.� The relation uRv i� there is a path from u tov is a partial order if the graph is acyclic. Thetopological sorting is a total order containingthis partial order.Class ProblemGiven an acyclic graph and a source node s, �ndthe length of the shortest path from s to each nodeit can reach.� Start with a topological order of the nodes,and visit them in this order. Consider thesuccessors v of each node u visited and deducesomething about the shortest path to v fromthe already-known shortest path to u.� Also: invent a similar algorithm to �nd thelongest path from s to each node.4


