CS109B Notes for Lecture 4/10/95

Depth-First Search

¢ A method of exploring a directed graph and
numbering the nodes.

e Many useful properties — stay tuned.

The DFS Algorithm
1. “unmark” all nodes.

2. Pick a start node vy and execute the recursive
function df s(v).

3. dfs(u) = for each successor v of u that is un-
marked:

a) Mark v.
b) Call dfs(v).

(Do nothing if v was already marked.)

Depth-First Search Tree

If dfs(v) is called by dfs(u), then make u — v a
tree edge with u the parent.

e Add children of a node in order, from the left.

()

Example:

The other arcs of the graph fall into 3 groups:

Other Arcs

1. Forward arcs: ancestor-to-proper-descendant

2. Backward arcs: descendant-to-not-necessar-
ily-proper-ancestor.

3. Cross arcs: right-to-left only.
1

(&)

Q Forward
Backward Q

OO

Cross
O left-to-right impossible — see FCS,
pp. 488-489.
DFS Forest

If some nodes not included in first tree, start again
from some unmarked node.

e Result is a sequence of trees, ordered left-to-
right in order of creation = depth-first search
forest.

e Note arcs between trees must go right-to-left.

O These are considered cross arcs.
Example:

4
()

Cross

Backward

Cross

Postorder Numbering

We may number nodes in the order that dfs fin-
ishes on the node.

Example: Figure above shows postorder num-

bers for this DFSF.

Postorder Numbers and Arcs Types

If w — v is an arc, then the postorder number of
u is the postorder number of v unless u — v is a
backward arc.

o FCS, pp. 493—4 explains why.

Running Time

DFS takes time at each node u proportional to the
number of successors of u, plus O(1) in case there
are no SucCessors.

e Thus, total time is O(n) for reaching each
node, plus O(m) for examining successors of
all nodes.

O Important trick: efforts at different
nodes varies, but total is proportional to

number of arcs. (Details: FCS, p. 491.)

O Since n < m, total is O(m), i.e., propor-
tional to size of data.

Why Depth-First Search?

A number of important algorithms are based on
depth-first search.

e Acyclicity and topological sorting (in class).
e Finding connected components (FCS, p. 499).
e More advanced, very efficient algorithms for:

O Planarity testing: can a graph be drawn
in the plane with no crossing edges? (im-
portant for integrated circuit layout, e.g.)

O Strong components: equivalence classes
in directed graph defined by u Ev iff there
are paths from u to v and back.

O Biconnected components: equivalence
classes in an undirected graph defined by
uFEv iff u = v or v and v are on a common
simple cycle. (important for “survivable”

3

networks = loss of an edge cannot discon-
nect nodes)

Testing For Cycles

A graph is acyclic if it has no cycles.

1.
2.

Create a DFSF.

Look at all arcs to see if they are backward.
Easy: just see if the head > tail.

If a backward arc, surely a cycle.
If no backward arc, then surely no cycle.

O Proof: consider the postorder numbers of
nodes on such a cycle. All arcs decrease
the number, but the sum of changes
around the cycle would have to be 0.

Topological Sorting

Given an acyclic graph, find a topological order-
ing of the nodes so that all arcs have their tail

preceding their head.

The reverse of postorder serves.

The relation u Rv iff there is a path from u to
v is a partial order if the graph is acyclic. The
topological sorting is a total order containing
this partial order.

Class Problem

Given an acyclic graph and a source node s, find
the length of the shortest path from s to each node

it can reach.

Start with a topological order of the nodes,
and visit them in this order. Consider the
successors v of each node u visited and deduce
something about the shortest path to v from
the already-known shortest path to u.

Also: invent a similar algorithm to find the
longest path from s to each node.

