CS109B Notes for Lecture 5/15/95

Tautologies

Logical expressions that evaluate to TRUE for any
truth-assignment.

e Embody reasoning principles.

e Compare with design of expressions, where
interesting functions are true for only some
truth-assignments.

Example: NOT pp (a statement cannot be true
and false at the same time).

Laws

Tautologies with = as the outermost operator, i.e.,

EF=PF.

e Important for applying algebraic transforma-
tions to logical expressions; optimizing ex-
pressions is the goal.

Example: Commutative laws for AND and OR:
Pg=qp;Pt9=q+p

Deriving Tautologies

e Building the truth table always works, but it
is exponential in the number of variables.

o  Substitution Principle: We may make any
substitution of an expression for (all occur-
rences of) a variable in a tautology, and we
still have a tautology.

Example: We know pg = gp is a tautology.

e Make the substitution p = » + st and q =
suv. That gives us the tautology (r+st)suv =
suv(r + .st_) without having to check a 32-row
truth table.

e Make the substitution p = =, ¢ = y to get
Ty = ye.

O In general, tautologies stated with one
set of variables may have their variables
renamed uniformly.
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Substitution of Equals for Equals

If we have law E = F and another tautology G,
we may substitute F' for any or all occurrences of
E in G, and the result remains a tautology.

Example: Let us derive an interesting law, the
law of the contrapositive: (p — q) = (g — p).

6.

Abbreviate SEE = “substitution of equals for
equals.”

Starting with the law of commutativity of OR:
(z+y) = (y+e), substitute z = pand y = ¢
to get (p+¢) = (¢ + ).

Use another easily proved tautology, the law
of double negation: q = g.

SEE in (1) to get: (p+q) = (g + p)-

Use the law definition of implies: (Z + y)
(z — y).

Two different substitutions into this law give
us (p+9) = (p— g) and (7 +p) = (¢ — P)-

SEE twice in (3) to get (p — q) = (g — p).

Tautology Catalog

It’s in the book, Section 12.8.

e Please read these.

Notice:

e AND and OR behave like union and intersection.
o In fact, if there were a “universal set” U and

“complement of a set S” were defined to be
U — S, then AND, OR, and NOT would behave
exactly like union, intersection, and comple-
ment.

O 0 and U would be 0 and 1, respectively.

O Venn Diagrams would look exactly like
graphical representations of truth tables;
the 2™ regions of an n-set diagram are
the 2™ rows of a truth table.



DeMorgan’s Laws

Used to push NOT below AND and OR.

NOT(pg) = (P + q)
NOT(p + q) = (P9)

Consequence: any logical expression can be
written so NOT applies only to variables, not
to higher-level expressions.

Explains duality principle: any tautology in-
volving AND, OR, NOT can have (AND and OR),
(TRUE and FALSE) interchanged and remain a
tautology.

O Read pp. 678-9 for proof.

Example: Consider the tautology p + p.

By “double negation,” NOT(I\TOT(p—I—ﬁ)) is also
a tautology.

By DeMorgan, and substitution of equals for
equals, NOT(pp) is a tautology.

Another use of double negation: NOT(pp) is a
tautology.

Tautologies as Reasoning Rules

Example: Contrapositive law: (p — ¢) = (¢ —

p)-

We saw in class how to prove p — ¢ it was
easier to prove ¢ — p, where

O p=“TisaMWST.”
O g = “T has no cycle.”

Prove “f T has a cycle, then T is not a
MWST?”; conclude “if T is a MWST, then T

has no cycle.”

Example: Case analysis: (p — q)(p — ¢q) — q.

Consider the following statements:
O p= “niseven.”

O ¢g=“n?*mod4=0o0rl”



e Prove “if nis even then n? mod 4 = 0 or 1 (0,
in particular)” and “if n is odd, then n mod
4 =0or1 (1in particular).

Example: Proof by contradiction: (p — 0) = p.

e For instance, p might be “L(D) # L,” where
D is a particular DFA and L is a particular
language.

e A fooling argument works by starting with p
(i.e., “L(D) = L”) and deriving FALSE.

O More precisely, we show that L(D) is not
really L, so we have both p and p.

O From these, we may use pp = 0 so we
have started with p and proved 0, or
FALSE.

e  We may conclude p is true; i.e., L(D) # L.



