Notes for Today’s Lecture

Design of Circuits

Large streams from little fountains flow,
Tall oaks from little acorns grow.
: David Everett, 1791. (written for a seven-year-old)

Motivations

e Not just for beauty.

o delay for each gate
— few nanoseconds per gate
— but want many millions of instructions per second
— naive 32-bit adder would have circuit-delay ~ 100 gates

— processing an add-instruction requires more circuitry than
just the basic adder

— (do the math)

e space for each gate
— errors per square inch of silicon
— if two gates are connected but there are many other gates

‘between’ them, propagation-delay along (long) wires

e constraints on structure of gates:
— fan-in
— fan-out

Example: Test if (32-Bit) Word is Zero
e Motivations: e.g. for instruction BZ: Branch if zero

— can reduce most other branches to this

e straightforward (naive) approach: textbook’s Figure 13.12
(page 713)

— sequentially OR inputs

e better scheme: textbook’s Figure 13.13 (page 714)
— smaller number of levels

— (same number of gates)

page 1 of 4

CS 109B
Handout #46
1995:May:26

(space tor you to add notes)



— this scheme is better even if gates have fan-in greater than
2
e how getting this better scheme?

— divide and conquer

Model for Divide-and-Conquer: Adder

e task: given two 32-bit numbers, produce their sum (and perhaps
a carry-bit)

e most naive approach: sequence of one-bit adders (using Fig-
ure 13.10, page 709)
— called a “ripple-carry adder”

— circuit-delay of 96 gates

e next most naive approach: OK, trying some ‘dividing and con-
quering’, divide bits in halves, high-order and low-order; try to
add them separately (Figure 13.15, page 717)

— need a carry from the low-order bits to the high-order bits

— this scheme is the same as ripple-carry!

e trick for better scheme: compute two sums, one in case carry-bit
is 1 and the other in case carry-bit is 0; when the carry arrives,
use it to select the correct result.

— adders called “carry-lookahead” or “carry-select” use such a
strategy

— computing two sums actually doesn’t hurt much!

Details of the Scheme:

e n-bit adder, for n a power of 2
e (constructed inductively/recursively)

e input-numbers x and y to be added: bits xy, x5, ..., x, — high-
order to low-order — and vy, ya, ..., Yn
e two sets of outputs

— in case the carry-in that this n-adder receives is 0, sum s in
bits s1, S2, ..., s, (high-order to low-order) and this sum’s
carry-out in a bit g.

— in case the carry-in that this n-adder receives is 1, sum ¢ in
bits t1, ta, ..., t, (high-order to low-order) and this case’s
sum’s carry-out in a bit p.

o (diagram)

page 2 of 4



The Construction:
1. Basis: n =1
e one-bit inputs x and y, four one-bit outputs s and ¢, ¢ and p
o determine formulas for the outputs as follows:

— in case the carry-in is 0:

+ sum of 0 and 0 is 0

 sum of 0 and 1 is 1

 sum of 1 and 0 is 1

+ sum of 1 and 1 is 0 with carry-out 1

So:
this case’s sum s = 2y OR Ty
this case’s carry-out ¢ = ay

— in case the carry-in is 1:

sum of 0 and 0 plus carry-in 1 is 1
sum of 0 and 1 plus carry-in 1 is 0 with carry-out 1
sum of 1 and 0 plus carry-in 1 is 0 with carry-out 1

EE G S

sum of 1 and 1 plus carry-in 1 is 1 with carry-out 1

So:
this case’s sum ¢t = Ty OR xy
this case’s carry-out p = x OR y

e ligure 13.16, page 718

e no carry-in input: remember that carry-in will be used after
addition to select between s (and g) or ¢ (and p).

2. Induction: build 2n-adder from two n-adders

e ligure 13.17, page 719

e input-bits a1, xo, ..., 2, and y1, Y2, ..., Yon
e output-bits ¢, s1, s2, ..., S, and p, ty, ta, ..., t2p
(a) first give a1, x2, ..., ¥, and y1, Y2, ..., Yo to one n-adder
(on the left),
Tpdls Tpa2y --vy T2 and Ypi1, Ynto, -- -, Y2, to the other
n-adder (on the right)
(b) left adder returns g&, sb, sh. ... sL and pl, ¢ b o0t
right adder returns g%, sft, st ... sB and pf, 8 4 L R
(c) we need g, s1, S2, ..., S2, and p, tq, to, ..., L2y,
o case 0: to get g, s1, s9, ..., S9,, suppose the carry-in to

the 2n-adder that we’re building is 0.

— Then the lowest-order sum-bit sy, which we need to
compute is the sum of x5, plus y,, when the carry-in
on the far right is 0

page 3 of 4



* coincidentally, s® = x5, PLUS y,,, when the carry-

in on the far right is 0
* S0 Sg, = sk
— similarly s9,_1 = Sf_l, Son_9 = Sf_z, ey Spyl = Sf
— next, the sum-bit s, which we need to compute is
x, PLUS vy, when the carry-in on the far right is 0

* but s = x, PLUS y, when the carry-in in the
middle is 0.

* fortunately, the carry-in in the middle is the carry-
out in the middle. In this case when the carry-in
on the far right is 0, the carry-out in the middle
is ¢%.

* putting the preceding two points together: when
gr is 0, sZ provides the value that we need for s,

* similar analysis shows that when gg is 1, s, = &

* SO S5, = g_RS% OR gMtL

— similarly s; = ¢®sl OR gt} for other i € {1..n},
and ¢ = gRg" OR ¢g"¢" (this can be reduced)
o case 1: to get p, 11, ta, ..., to,, suppose the carry-in to
the 2n-adder that we’re building is 1. Then analysis as
in the preceding case yields:

— t;=1trfori € {(n+1)..2n}
— t; = pRsk OR ptth for i € {1..n}
— p = ptg" OR PP
e for example of circuitry (for ¢; with ¢ € {l..n}): Fig-
ure 13.18, page 720

This Circuit’s Circuit-Delay:
e recurrence-relation: D(1) =3, D(2n) = D(n) + 3
e solution: D(n) = 3(1 + log, n)
e e.g. D(32) = 18, which is less than the other adder’s delay of 96

(The number of gates is larger, but only by a factor O(logn), which is
tolerable considering the better performance.

Class Exercises

1. With some technologies for circuits, instead of AND-, OR-, and NOT-
gates, only NAND-gates were used. FExplain how to construct this
‘carry-select’-type adder using only NAND-gates. (To start, explain
how to construct a NOT-gate using only NAND-gates.)

2. Considering the motivating issues — circuit-delay, propagation-
delay, fan-in, fan-out — this ‘carry-select’-type scheme for the
adder actually has a significant flaw; what is this flaw?

page 4 of 4



