Notes for Today's Lecture

(space for you to add notes)

Design of Circuits

Large streams from little fountains flow,
Tall oaks from little acorns grow.
: David Everett, 1791. (written for a seven-year-old)

Motivations

- Not just for beauty.
- delay for each gate
 - few nanoseconds per gate
 - but want many millions of instructions per second
 - naive 32-bit adder would have circuit-delay ≈ 100 gates
 - processing an add-instruction requires more circuitry than just the basic adder
 - (do the math)
- space for each gate
 - errors per square inch of silicon
 - if two gates are connected but there are many other gates 'between' them, propagation-delay along (long) wires
- constraints on structure of gates:
 - fan-in
 - fan-out

Example: Test if (32-Bit) Word is Zero

- Motivations: e.g. for instruction BZ: Branch if zero
 - can reduce most other branches to this
- straightforward (naive) approach: textbook's Figure 13.12 (page 713)
 - sequentially OR inputs
- better scheme: textbook's Figure 13.13 (page 714)
 - smaller number of levels
 - (same number of gates)

- this scheme is better even if gates have fan-in greater than 2
- how getting this better scheme?
 - divide and conquer

Model for Divide-and-Conquer: Adder

- task: given two 32-bit numbers, produce their sum (and perhaps a carry-bit)
- most naive approach: sequence of one-bit adders (using Figure 13.10, page 709)
 - called a "ripple-carry adder"
 - circuit-delay of 96 gates
- next most naive approach: OK, trying some 'dividing and conquering', divide bits in halves, high-order and low-order; try to add them separately (Figure 13.15, page 717)
 - need a carry from the low-order bits to the high-order bits
 - this scheme is the same as ripple-carry!
- trick for better scheme: compute two sums, one in case carry-bit is 1 and the other in case carry-bit is 0; when the carry arrives, use it to select the correct result.
 - adders called "carry-lookahead" or "carry-select" use such a strategy
 - computing two sums actually doesn't hurt much!

Details of the Scheme:

- n-bit adder, for n a power of 2
- (constructed inductively/recursively)
- input-numbers x and y to be added: bits x_1, x_2, \ldots, x_n high-order to low-order and y_1, y_2, \ldots, y_n
- two sets of outputs
 - in case the carry-in that this n-adder receives is 0, sum s in bits s_1, s_2, \ldots, s_n (high-order to low-order) and this sum's carry-out in a bit g.
 - in case the carry-in that this n-adder receives is 1, sum t in bits t_1, t_2, \ldots, t_n (high-order to low-order) and this case's sum's carry-out in a bit p.
- (diagram)

The Construction:

- 1. Basis: n = 1
 - one-bit inputs x and y, four one-bit outputs s and g, t and p
 - determine formulas for the outputs as follows:
 - in case the carry-in is 0:
 - * sum of 0 and 0 is 0
 - * sum of 0 and 1 is 1
 - * sum of 1 and 0 is 1
 - * sum of 1 and 1 is 0 with carry-out 1

So:

this case's sum
$$s = x\overline{y}$$
 OR $\overline{x}y$ this case's carry-out $q = xy$

- in case the carry-in is 1:
 - * sum of 0 and 0 plus carry-in 1 is 1
 - * sum of 0 and 1 plus carry-in 1 is 0 with carry-out 1
 - * sum of 1 and 0 plus carry-in 1 is 0 with carry-out 1
 - * sum of 1 and 1 plus carry-in 1 is 1 with carry-out 1 So:

this case's sum $t = \overline{x}\overline{y}$ OR xy this case's carry-out p = x OR y

- Figure 13.16, page 718
- no carry-in input: remember that carry-in will be used after addition to select between s (and q) or t (and p).
- 2. Induction: build 2n-adder from two n-adders
 - Figure 13.17, page 719
 - input-bits x_1, x_2, \ldots, x_{2n} and y_1, y_2, \ldots, y_{2n}
 - output-bits $g, s_1, s_2, \ldots, s_{2n}$ and $p, t_1, t_2, \ldots, t_{2n}$
 - (a) first give x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n to one n-adder (on the left),

 $x_{n+1}, x_{n+2}, \ldots, x_{2n}$ and $y_{n+1}, y_{n+2}, \ldots, y_{2n}$ to the other n-adder (on the right)

- (b) left adder returns g^L , s_1^L , s_2^L , ..., s_n^L and p^L , t_1^L , t_2^L , ..., t_n^L ; right adder returns g^R , s_1^R , s_2^R , ..., s_n^R and p^R , t_1^R , t_2^R , ..., t_n^R
- (c) we need $g, s_1, s_2, \ldots, s_{2n}$ and $p, t_1, t_2, \ldots, t_{2n}$
 - case 0: to get g, s_1 , s_2 , ..., s_{2n} , suppose the carry-in to the 2n-adder that we're building is 0.
 - Then the lowest-order sum-bit s_{2n} which we need to compute is the sum of x_{2n} plus y_{2n} when the carry-in on the far right is 0

- * coincidentally, $s_n^R = x_{2n}$ PLUS y_{2n} when the carryin on the far right is 0
- * so $s_{2n} = s_n^R$
- similarly $s_{2n-1} = s_{n-1}^R$, $s_{2n-2} = s_{n-2}^R$, ..., $s_{n+1} = s_1^R$
- next, the sum-bit s_n which we need to compute is x_n PLUS y_n when the carry-in on the far right is 0
 - * but $s_n^L = x_n$ PLUS y_n when the carry-in in the middle is 0.
 - * fortunately, the carry-in in the middle is the carryout in the middle. In this case when the carry-in on the far right is 0, the carry-out in the middle is q^R .
 - * putting the preceding two points together: when g_R is 0, s_n^L provides the value that we need for s_n
 - * similar analysis shows that when g_R is 1, $s_n = t_n^L$
 - * so $s_n = \overline{g^R} s_n^L$ OR $g^R t_n^L$
- similarly $\underline{s_i} = \overline{g^{\mathrm{R}}} s_i^{\mathrm{L}}$ OR $g^{\mathrm{R}} t_i^{\mathrm{L}}$ for other $i \in \{1..n\}$, and $g = \overline{g^{\mathrm{R}}} g^{\mathrm{L}}$ OR $g^{\mathrm{R}} g^{\mathrm{L}}$ (this can be reduced)
- case 1: to get $p, t_1, t_2, \ldots, t_{2n}$, suppose the carry-in to the 2n-adder that we're building is 1. Then analysis as in the preceding case yields:

 - $\begin{array}{l} -\ t_i = t_i^{\mathrm{L}} \ \mathrm{for} \ i \in \{(n+1) \mathinner{\ldotp\ldotp} 2n\} \\ -\ t_i = \ \overline{p^{\mathrm{R}}} s_i^{\mathrm{L}} \ \mathrm{OR} \ p^{\mathrm{R}} t_i^{\mathrm{L}} \ \mathrm{for} \ i \in \{1..n\} \end{array}$
 - $-p = \overline{p^{\mathrm{R}}}q^{\mathrm{L}} \text{ OR } n^{\mathrm{R}}n^{\mathrm{L}}$
- for example of circuitry (for t_i with $i \in \{1..n\}$): Figure 13.18, page 720

This Circuit's Circuit-Delay:

- recurrence-relation: D(1) = 3, D(2n) = D(n) + 3
- solution: $D(n) = 3(1 + \log_2 n)$
- e.g. D(32) = 18, which is less than the other adder's delay of 96

(The number of gates is larger, but only by a factor $O(\log n)$, which is tolerable considering the better performance.

Class Exercises

- 1. With some technologies for circuits, instead of AND-, OR-, and NOTgates, only NAND-gates were used. Explain how to construct this 'carry-select'-type adder using only NAND-gates. (To start, explain how to construct a NOT-gate using only NAND-gates.)
- 2. Considering the motivating issues circuit-delay, propagationdelay, fan-in, fan-out — this 'carry-select'-type scheme for the adder actually has a significant flaw; what is this flaw?