
CS 109BHandout #461995:May:26Notes for Today's Lecture (space for you to add notes)Design of CircuitsLarge streams from little fountains
ow,Tall oaks from little acorns grow.: David Everett, 1791. (written for a seven-year-old)Motivations� Not just for beauty.� delay for each gate{ few nanoseconds per gate{ but want many millions of instructions per second{ naive 32-bit adder would have circuit-delay � 100 gates{ processing an add-instruction requires more circuitry thanjust the basic adder{ (do the math)� space for each gate{ errors per square inch of silicon{ if two gates are connected but there are many other gates`between' them, propagation-delay along (long) wires� constraints on structure of gates:{ fan-in{ fan-outExample: Test if (32-Bit) Word is Zero� Motivations: e.g. for instruction BZ: Branch if zero{ can reduce most other branches to this� straightforward (naive) approach: textbook's Figure 13.12(page 713){ sequentially OR inputs� better scheme: textbook's Figure 13.13 (page 714){ smaller number of levels{ (same number of gates) page 1 of 4

{ this scheme is better even if gates have fan-in greater than2� how getting this better scheme?{ divide and conquerModel for Divide-and-Conquer: Adder� task: given two 32-bit numbers, produce their sum (and perhapsa carry-bit)� most naive approach: sequence of one-bit adders (using Fig-ure 13.10, page 709){ called a \ripple-carry adder"{ circuit-delay of 96 gates� next most naive approach: OK, trying some `dividing and con-quering', divide bits in halves, high-order and low-order; try toadd them separately (Figure 13.15, page 717){ need a carry from the low-order bits to the high-order bits{ this scheme is the same as ripple-carry!� trick for better scheme: compute two sums, one in case carry-bitis 1 and the other in case carry-bit is 0; when the carry arrives,use it to select the correct result.{ adders called \carry-lookahead" or \carry-select" use such astrategy{ computing two sums actually doesn't hurt much!Details of the Scheme:� n-bit adder, for n a power of 2� (constructed inductively/recursively)� input-numbers x and y to be added: bits x1, x2, . . . , xn | high-order to low-order | and y1, y2, . . . , yn� two sets of outputs{ in case the carry-in that this n-adder receives is 0, sum s inbits s1, s2, . . . , sn (high-order to low-order) and this sum'scarry-out in a bit g.{ in case the carry-in that this n-adder receives is 1, sum t inbits t1, t2, . . . , tn (high-order to low-order) and this case'ssum's carry-out in a bit p.� hdiagrami page 2 of 4

The Construction:1. Basis: n = 1� one-bit inputs x and y, four one-bit outputs s and g, t and p� determine formulas for the outputs as follows:{ in case the carry-in is 0:� sum of 0 and 0 is 0� sum of 0 and 1 is 1� sum of 1 and 0 is 1� sum of 1 and 1 is 0 with carry-out 1So: this case's sum s = xy OR xythis case's carry-out g = xy{ in case the carry-in is 1:� sum of 0 and 0 plus carry-in 1 is 1� sum of 0 and 1 plus carry-in 1 is 0 with carry-out 1� sum of 1 and 0 plus carry-in 1 is 0 with carry-out 1� sum of 1 and 1 plus carry-in 1 is 1 with carry-out 1So: this case's sum t = xy OR xythis case's carry-out p = x OR y� Figure 13.16, page 718� no carry-in input: remember that carry-in will be used afteraddition to select between s (and g) or t (and p).2. Induction: build 2n-adder from two n-adders� Figure 13.17, page 719� input-bits x1, x2, . . . , x2n and y1, y2, . . . , y2n� output-bits g, s1, s2, . . . , s2n and p, t1, t2, . . . , t2n(a) �rst give x1, x2, . . . , xn and y1, y2, . . . , yn to one n-adder(on the left),xn+1, xn+2, . . . , x2n and yn+1, yn+2, . . . , y2n to the othern-adder (on the right)(b) left adder returns gL, sL1 , sL2 , . . . , sLn and pL, tL1 , tL2 , . . . , tLn;right adder returns gR, sR1 , sR2 , . . . , sRn and pR, tR1 , tR2 , . . . , tRn(c) we need g, s1, s2, . . . , s2n and p, t1, t2, . . . , t2n� case 0: to get g, s1, s2, . . . , s2n, suppose the carry-in tothe 2n-adder that we're building is 0.{ Then the lowest-order sum-bit s2n which we need tocompute is the sum of x2n plus y2n when the carry-inon the far right is 0 page 3 of 4

� coincidentally, sRn = x2n PLUS y2n when the carry-in on the far right is 0� so s2n = sRn{ similarly s2n�1 = sRn�1, s2n�2 = sRn�2, . . . , sn+1 = sR1{ next, the sum-bit sn which we need to compute isxn PLUS yn when the carry-in on the far right is 0� but sLn = xn PLUS yn when the carry-in in themiddle is 0.� fortunately, the carry-in in the middle is the carry-out in the middle. In this case when the carry-inon the far right is 0, the carry-out in the middleis gR.� putting the preceding two points together: whengR is 0, sLn provides the value that we need for sn� similar analysis shows that when gR is 1, sn = tLn� so sn = gRsLn OR gRtLn{ similarly si = gR sLi OR gRtLi for other i 2 f1::ng,and g = gRgL OR gRgL (this can be reduced)� case 1: to get p, t1, t2, . . . , t2n, suppose the carry-in tothe 2n-adder that we're building is 1. Then analysis asin the preceding case yields:{ ti = tLi for i 2 f(n+1) :: 2ng{ ti = pRsLi OR pRtLi for i 2 f1::ng{ p = pRgL OR pRpL� for example of circuitry (for ti with i 2 f1::ng): Fig-ure 13.18, page 720This Circuit's Circuit-Delay:� recurrence-relation: D(1) = 3, D(2n) = D(n) + 3� solution: D(n) = 3(1 + log2 n)� e.g. D(32) = 18, which is less than the other adder's delay of 96(The number of gates is larger, but only by a factor O(log n), which istolerable considering the better performance.Class Exercises1. With some technologies for circuits, instead of AND-, OR-, and NOT-gates, only NAND-gates were used. Explain how to construct this`carry-select'-type adder using only NAND-gates. (To start, explainhow to construct a NOT-gate using only NAND-gates.)2. Considering the motivating issues | circuit-delay, propagation-delay, fan-in, fan-out | this `carry-select'-type scheme for theadder actually has a signi�cant
aw; what is this
aw?page 4 of 4

