CS109B Notes for Lecture 5/31/95

Predicates

Essentially Boolean-valued functions with arguments of arbitrary type.

- But predicates are uninterpreted; a predicate named less, for example, need not give less(3,4) the value TRUE.
- In the deeper realms of logic, one forces a predicate like *less* to be what one wants by asserting expressions about it that can only be satisfied by a predicate that behaves as you intend.
- But back here in the real world, that is too hard. Thus we use extra-logical means to explain and use the "meaning" of a symbol.
 - □ E.g., we said p stands for "T is a MWST" and spoke informally about what that meant, while still using formal logic for matters like the contrapositive law.

Example: We might assert a logical expression like

$$less(X,Y)$$
 AND $less(Y,Z) \rightarrow less(X,Z)$

i.e., the transitive law for predicate less.

• That narrows down somewhat what less can be, but it still could be "greater than," "equals," or any transitive relation.

Logical Expressions: The Predicate Logic Case

Basis: An atomic formula is a logical expression. These are predicate symbols applied to arguments, which are either variables or constants.

- Convention: predicate names and constants begin with a lower-case letter, while variables begin with an upper-case letter.
- Numbers and (quoted) character strings are also constants.

Example: Here are some atomic formulas: p(X,Y), q(0,X,a), p.

- The second has first and third arguments constant.
- p is a zero-ary predicate; it is essentially the same as a propositional variable, since its value is either TRUE or FALSE, independent of any arguments.

Induction: Logical expressions can be built from smaller logical expressions by

- 1. The usual logical connectives: AND, \rightarrow , etc.
- 2. The quantifier \forall ("for all"). It is used in expressions like $(\forall X)p(X,X)$, i.e., "for all X, p(X,X) is true.
 - That might be the case if, say, p were the predicate \geq , i.e., "for all $X, X \geq X$."
- 3. The quantifier \exists ("there exists"). It is used in expressions like $(\exists Y)(p(X,Y) \texttt{AND} p(Y,Z))$, i.e., "there exists a value of Y such that both p(X,Y) and p(Y,Z) are true.
 - That might make sense if, e.g., p were the predicate <, and $X \neq Z$.

Class Problems

Suppose that lt(X,Y) is the predicate that is true iff X < Y and ne(X,Y) is true iff $X \neq Y$. Write logical expressions for the following:

- 1. "For all X other than 0, there is some Y such that 0 < Y < X."
- 2. "There is some X such that for all Y and Z, X is equal to neither Y nor Z."

Are these expressions true or false?

Bound/Free Variables

Think of a quantified expression $(\forall X)E$ or $(\exists X)E$ as a "declaration" of X that applies to the expression E.

- Uses of X within E are said to be bound to that quantification of X.
- But another quantification of X within E supercedes the outer quantification.
 - ☐ Analogous to a local definition of x within a C or ML function superceding a global or external declaration of x.
- A use of a variable that has no associated quantification within an expression E is said to be free in E.
 - ☐ I.e., a free variable is like an external variable in C.

Example: Consider:

$$(\forall X) \Big((\exists Y) \big((\forall X) p(X,Y) \text{ and } q(X,Y) \big) \Big)$$

- Convention: quantifiers have highest precedence and so bind only the shortest well-formed expression that follows them.
 - Thus, the innermost quantified expression is just $(\forall X)p(X,Y)$.
 - Note: X is bound (to the $(\forall X)$ in this subexpression; Y is free.
- Here is the same expression with bindings of variables to quantifiers indicated by subscripts.
 - ☐ You may think of the subscripted variables as distinct variables. As with local variables in C, you can rename them at will, as long as you don't accidently use a name that has another declaration at that point.

$$(orall X_1)\Big((\exists Y_2)ig((orall X_3)p(X_3,Y_2) \ exttt{AND} \ q(X_1,Y_2)ig)\Big)$$

What does this expression "mean"? Roughly:

- $(\forall X)p(X,Y)$ is true for a given value of Y if no matter what value X has, p(X,Y) is true.
 - \square Call this condition S(Y).

- We don't know what p means, so we don't know whether S(Y) is true, but for a given p we could decide whether S(Y) is true.
- $(\exists Y)((\forall X)p(X,Y))$ AND q(X,Y) is true for any given X if there is some Y such that
 - 1. S(Y) is true, and
 - 2. q(X,Y) is true.
 - \square Call this statement T(X). Again, we don't know how to tell whether T(X) is true, but given p and q we could decide.
- The entire statement says that T(X) is true for every X.