CS109B Notes for Lecture 6/2/95

Why Interpretations?

- Predicate logic provides an easy way to represent what a logical expression "means": its truth table.
- "Interpretations" are the things that correspond to rows of the truth table (= truth assignments).
 - ☐ While the number of truth assignments for a propositional expression is finite, the number of interpretations is infinite, making our job harder and less intuitive.

Meaning of a Propositional Logic Expression

We want to get to an understanding of what a predicate logic expression "means." To do so, we need first to review what a propositional logic expression means.

- E is a function from truth-assignments to {TRUE, FALSE}. In ML terms, its type is (vars->bool)->bool, where vars is the set of propositional variables in E.
 - ☐ Thus a truth assignment is a function from the variables to truth-values; you give it a variable like *p* and it tells you whether it thinks *p* is true or false.
 - \square Also thus, you give E a truth assignment as input, and it gives you back TRUE or FALSE.
- A tautology is an expression that always gives you back TRUE.

Meaning of Predicates

Propositional variables are simple; they can only take the value TRUE or FALSE. Predicates are more complex:

- They each have 1 or more arguments, and the type of arguments is arbitrary.
- The value of a predicate is a function from assignment of values for each of its arguments to {TRUE, FALSE}.
- In ML terms, the type of a predicate is

That is, the "input" to a predicate is a function that gives for each integer (from 1 up to the number of arguments) a value in some domain type 'a. The output is TRUE or FALSE.

Interpretations

Like a truth assignment, an *interpretation* assigns a value to each symbol of an expression E that needs to be defined externally.

- These are the predicates and any free variables in E.
- The type of an interpretation, in ML terms, is

where free is the set of free variables and preds the set of predicates in E.

Meaning of a Predicate-Logic Expression

An expression E is a function from interpretations to $\{TRUE, FALSE\}$; i.e., its ML type is:

Tautologies of Predicate Logic

An expression whose value is a function with range value TRUE for every argument is a *tautology*.

Computing the Meaning

We compute the meaning of an expression E for a given interpretation I by a structural induction on the expression tree for E.

- But a variable bound in E may be free in some subexpression of E.
 - \square Thus, the interpretation or interpretations applied to a subexpression may extend E with assignments of a value to some free variables.
- Propositional logic operators applied in the obvious way.
- $(\exists X)F$ evaluates to true if there is some value v in the domain of I such that F is TRUE under interpretation J, where:
 - J = I extended to assign the free variable X the value v.
- $(\forall X)F$ evaluates to TRUE if the above is true for every v in the domain of I.

Example: Let E be $(\forall X)(\exists Y)p(X,Y)$.

- Let I have integers as domain, and let p be the function that is true iff its second argument is larger than its first argument.
- 1. Whole expression: We ask whether subexpression $(\exists Y)p(X,Y)$ is true for every interpretation I_j , where:
 - \square I_j is I extended to assign integer j to free variable X.
- 2. Subexpression $(\exists Y)p(X,Y)$: We ask whether there is some integer k such that p(X,Y) is true under the interpretation I_{jk} that assigns j and k, respectively, to free variables X and Y.
- 2'. For any j we find that k = j + 1 makes p(j, k) true, so the answer to (2) is "yes" for any j.
- 1'. Now we have our answer to (1): indeed $(\exists Y)p(X,Y)$ is true under every interpretation I_j .
- Thus, E is true under interpretation I.
- Note: this does not mean E is a tautology. It isn't. It is just true under this interpretation.

- There are many interpretations under which E is false, e.g. let the domain be the complex numbers and let p(X,Y) be true if the magnitude of Y is less than the magnitude of X.
 - \Box $(\exists Y)p(X,Y)$ is false for X=0+0i.

Class Problem

Consider expression

$$(\exists X)p(X) \to (\forall X)p(X)$$

- a) What does it intuitively say?
- b) Give one interpretation for which it is true, one for which it is false.
 - ☐ Hint: if you are having trouble thinking about integer or real domains, try a finite domain.