CS109B Notes for Lecture 6/5/95

Why Tautologies Again?

- Same reason: they embody logical principles that do not depend on the meaning (i.e., interpretation) of the symbols.
- But predicate logic is richer in tautologies than propositional logic, because there are new concepts to incorporate: quantifiers and predicates with arguments.

What is Lost Moving From Propositional to Predicate Logic?

- While there is a finite (although exponentialtime) test for tautologyhood in propositional logic (truth tables), there is no such test for predicate logic.
- Thus, the only ways to prove a tautology in predicate logic are:
- 1. Reason about all interpretations using some ad-hoc argument, or
- 2. Deduce the tautology from other known tautologies, using the four transformations: substitution principle, substitution of equals for equals, commutativity of \equiv and transitivity of \equiv .

Tautologies of Predicate Logic

A major source is substitution of predicate logic expressions for the variables of *propositional* logic tautologies.

• Laws unique to predicate logic follow below.

"Infinite DeMorgan's laws"

- (a) $(\forall X)E \equiv \mathtt{NOT}((\exists X)(\mathtt{NOT}E))$
- (b) $(\exists X)E \equiv \mathtt{NOT}\big((\forall X)(\mathtt{NOT}E)\big)$

Example: We can say:

- 1. 'G is a complete graph if for every pair of distinct nodes u and v there is an edge $\{u, v\}$." We could also say
- 2. "G is a complete graph if for no pair of distinct nodes u and v is edge $\{u, v\}$ missing."
- These are equivalent statements.
- Formally, let ne(U, V) stand for " $U \neq V$ " and let p(U, V) stand for "there is an edge $\{U, V\}$." Then the above statements are:
 - (1) $(\forall U)(\forall V)(ne(U,V) \rightarrow p(U,V))$
 - (2) NOT $\Big((\exists U)(\exists V) \big(ne(U,V) \text{ AND NOT } p(U,V)\big)\Big)$
- Let E = ne(U, V) AND NOT p(U, V). Then we can rewrite (2) as:
 - (2') NOT $((\exists U)(\exists V)E)$
- Use infinite DeMorgan (b) on $(\exists V)E$:
 - $(3) \ \operatorname{NOT} \Big((\exists U) \big(\operatorname{NOT} (\forall V) (\operatorname{NOT} \, E) \big) \Big)$
- Use infinite DeMorgan (a) backwards on (3).
 - $(4) \ (\forall U)(\forall V)(\texttt{NOT}\ E)$
- By "finite" DeMorgan and "double negation,"
 NOT E is equivalent to

NOT
$$ne(U,V)$$
 OR $p(U,V)$

which is in turn equivalent to

$$ne(U,V) \to p(U,V)$$

Thus, (4) is transformed into (1).

• By substitution of equals for equals, we have proved (1) is equivalent to (2).

Renaming

 $(\forall X)E \equiv (\forall Y)F$ provided

- \Box F is E with all free occurrences of X changed to Y.
- \square There are no free occurrences of Y in E.

• Similar law for \exists .

Example: $(\forall X)p(X,Y)$.

• We may replace X by Z to get $(\forall Z)(p(Z,Y)$. That is,

$$(\forall X)p(X,Y) \equiv (\forall Z)p(Z,Y)$$

is a tautology.

• However, we may not replace X by Y, because Y is free in p(X,Y). That is,

$$(\forall X)p(X,Y) \equiv (\forall Y)p(Y,Y)$$

is not a tautology.

Moving quantifiers inside/outside of AND, OR

$$E$$
 AND $(\forall X)F \equiv (\forall X)(E$ AND $F)$

provided there is no free use of X in E.

- 7 similar rules: AND can be OR, \forall can be \exists , and the order of E and F can be switched.
- Compare with making a local C variable x global. OK unless the scope of x now includes some function that used to refer to another global x.

Example: $(\forall X)(p(X) \text{ OR } q(Y))$.

• We can move the $(\forall X)$ to the left operand of the OR to get $(\forall X)p(X)$ OR q(Y). That is,

$$(orall X)ig(p(X) \; exttt{OR} \; q(Y)ig) \equiv (orall X)p(X) \; exttt{OR} \; q(Y)$$

is a tautology.

• However, if X were free in q — e.g., q(X,Y) — then we could not move the quantifier. That is,

$$(orall X)ig(p(X)\ \mathtt{OR}\ q(X,Y)ig)\equiv (orall X)p(X)\ \mathtt{OR}\ q(X,Y)$$

is not a tautology.

Default Universal Quantification

Any free variables in an expression (not a subexpression of some larger expression) are implicitly universally quantified. • $(\forall X)E$ is a tautology iff E is a tautology.

Example: To say "p(X)" is the same as saying " $(\forall X)p(X)$."

• Both say "p is true no matter what X is."