CS109B Notes for Lecture 6/5/95

Why Tautologies Again?

Same reason: they embody logical principles
that do not depend on the meaning (i.e., in-
terpretation) of the symbols.

But predicate logic is richer in tautologies
than propositional logic, because there are
new concepts to incorporate: quantifiers and
predicates with arguments.

What is Lost Moving From Propositional to
Predicate Logic?

While there is a finite (although exponential-
time) test for tautologyhood in propositional
logic (truth tables), there is no such test for
predicate logic.

Thus, the only ways to prove a tautology in
predicate logic are:

Reason about all interpretations using some
ad-hoc argument, or

Deduce the tautology from other known tau-
tologies, using the four transformations: sub-
stitution principle, substitution of equals for
equals, commutativity of = and transitivity
of =.

Tautologies of Predicate Logic

A major source is substitution of predicate logic
expressions for the variables of propositional logic
tautologies.

Laws unique to predicate logic follow below.

“Infinite DeMorgan’s laws”

(a) (VX)E = NOT((3X)(NOTE))
(b) (3X)E = 0T ((VX)(NOTE))

Example: We can say:



1. ‘G is a complete graph if for every pair of
distinct nodes u and v there is an edge {u,v}.”
We could also say

2. “@ is a complete graph if for no pair of dis-
tinct nodes u and v is edge {u,v} missing.”

e These are equivalent statements.

e Formally, let ne(U,V) stand for “U # V”
and let p(U,V) stand for “there is an edge
{U,V}.” Then the above statements are:

(1) (VU)VV)(ne(U,V) — p(U,V))
(2) NOT((EIU)(EIV)(ne(U,V) AND NOT p(U,V)))

o Let E =ne(U,V) AND NOT p(U, V)) Then we

can rewrite (2) as:
(2') NOT((3U)(IV)E)

e  Use infinite DeMorgan (b) on (IV)E:
(3) NOT((EIU)(NOT(VV)(NOT E)))

e  Use infinite DeMorgan (a) backwards on (3).
(4) (YU)(VV)(NOT E)

e By “finite” DeMorgan and “double negation,”
NOT E is equivalent to

NOT ne(U, V) OR p(U,V)
which is in turn equivalent to
ne(U,V) - p(U,V)
Thus, (4) is transformed into (1).
e By substitution of equals for equals, we have

proved (1) is equivalent to (2).

Renaming
(VX)E = (VY)F provided

O F is F with all free occurrences of X
changed to Y.

O There are no free occurrences of Y in E.



° Similar law for 4.
Example: (VX)p(X,Y).

e  We may replace X by Z to get (VZ)(p(Z,Y).
That is,

(VX)p(X,Y) = (VZ)p(Z,Y)
is a tautology.

e However, we may not replace X by Y, be-

cause Y is free in p(X,Y). That is,
(VX)p(X,Y) = (VY)p(Y,Y)

is mot a tautology.
Moving quantifiers inside/outside of AND, OR

E anDp (VX)F = (VX)(E AND F)
provided there is no free use of X in E.

e 7 similar rules: AND can be OR, V can be dJ,
and the order of £ and F' can be switched.

o Compare with making a local C variable x
global. OK unless the scope of x now includes
some function that used to refer to another

global x.

Example: (VX)(p(X) OR ¢(Y)).

e  We can move the (VX) to the left operand of
the OR to get (VX )p(X) OR q(Y) That is,

(VX)(p(X) OR ¢(Y)) = (VX)p(X) OR g(Y)
is a tautology.

e However, if X were free in ¢ — e.g.,
g(X,Y) — then we could not move the quan-
tifier. That is,

(VX)(p(X) OR ¢(X,Y)) = (VX )p(X) OR ¢(X,Y)

is mot a tautology.

Default Universal Quantification

Any free variables in an expression (not a subex-
pression of some larger expression) are implicitly
universally quantified.



e (VX)E is a tautology iff E is a tautology.

Example: To say “p(X)” is the same as saying
“(VX)p(X)‘”

e Both say “pis true no matter what X is.”



