CS109B Notes for Lecture 6/7/95

Unsolvable Problems

° Some problems have “efficient” solutions, i.e.,
they have algorithms that run in time polyno-
mial in the length of input.

a Examples: testing whether a propositional
formula is true under a truth assignment,
a graph is bipartite
° NP-complete problems are “intractable”; there
seem to be no efficient algorithms for them

a Examples: testing whether a propositional
formula is satisfiable, a graph is tripartite

° Some problems are “unsolvable”; there cannot
exist any algorithms for them !

a Examples: stick around

Algorithms are ML functions

We can represent the inputs for a problem as a string
in ML. We can then write an algorithm for the prob-
lem as an ML function of type string -> ...

Example: We can easily represent propositional for-
mulas as strings.

Then, we can write the algorithm for satisfiability as
an ML function

Sat : string -> bool

with Sat returning true if the formula is satisfiable
and false otherwise.

Church’s Thesis: Every algorithm can be programmed

as an ML function.

Thus a problem is solvable only if we can write an ML
function to solve the problem. Conversely, to prove
that a problem is unsolvable it suffices to show that
there is no ML function that would solve the problem.

Halting Problem

Given the definition of an ML function £ of type
string -> bool and an input string s for £, does
f halt on argument s?



Question: Does there exist an algorithm to solve the
halting problem? Equivalently, can we write an ML
function

HaltTester: string* string— > bool

such that for strings p, s

e If pis a valid definition of an ML function
f:string->bool then

O HaltTester(p,s) returns true if £(s)
halts

O HaltTester(p,s) returns false if £(s)
goes into an infinite loop

e If pisnot a valid definition of an ML function,
HaltTester(p,s) returns false

Self Reference
We can apply an ML function f:string -> bool to
itself in the following sense.

Suppose the definition of £ is
fun f(s) = ...

Then "fun £(s) = ..."isjust a string and thus we
can write

f "fun f(s) = ... "

Nothing strange about this. For example, if
fun len(s) = length(explode(s))

then

len "fun len(s) = length(explode(s))"

returns 31

Diagonalization
Assume we can write an ML function

fun HaltTester(p,s) = ...

Then we can write the following ML function



fun weird(s) = if HaltTester(s,s)
then loop(s)
else true

where
fun loop(s) = loop(s)

What does weird do?
O If f "fun £(s) = ..." halts then

weird "fun f(s) = ..."
goes into an infinite loop
O If £ "fun £(s) = ..." goes into an infinite
loop then
weird "fun f(s) = ..."

returns true, i.e., it halts

Why weird is weird
Consider what happens if we apply weird to itself,
i.€.,

weird "fun weird (s) = ... "

This either halts or goes into an infinite loop

O If it halts then

weird "fun weird (s) = ... "

is supposed to go into an infinite loop #%'&
O If it goes into an infinite loop then

weird "fun weird (s) = ... "

is supposed to halt #%'&

Therefore, our assumption that there is an ML func-
tion HaltTester must be wrong!

That is, the halting problem is unsolvable.
Reductions

Can now show that other problems are unsolvable by
reducing the halting problem to them.

Example: Given the definition of an ML function
f:string->bool, does £ halt on all inputs?

Suppose this problem was solvable, i.e., we can write
a function



AllHalt : string -> bool

such that Al11Halt "fun f ..." returns true if f
halts on all strings and false otherwise.

Then, we can solve the halting problem. Suppose we
are given the definition of a function "fun £ ... "
and a string s and we want to know whether £ halts
on s. Then, we can construct the function

fun g(x) = let fun £ ... in £(s) end

and run Al1Halt on g and return the same answer.

Other Unsolvable Problems

° Given an ML function £, is there any input on
which £ halts?

o Given two grammars (¢, GG, are their languages
the same?
o Given a grammar (, is its language regular?

Class Problem
Are the following problems solvable?

° Given a boolean ML expression b (represented
as a string), does b halt when executed? Given
an arbitrary ML expression e does e halt when
executed?

° Given two ML expressions f and g of type string
-> bool, do f and g compute the same func-
tion (i.e., are they algorithms for solving the
same problem)?

Final Thought

Suppose we wanted to invent a language PerfectML
such that all the programs that we could write in Per-
fectML always halted. At the same time, PerfectML
should be powerful enough to be able to program all
computable functions in it. Unfortunately, this is im-
possible!

PerfectML is useful only if we have an algorithm to
execute its programs on inputs. For example, we
should be able to write an ML function

execute : string * string -> bool



which given the definition of a PerfectML function
f:string->bool written as a string and an input s
returns the result of running £(s) in PerfectML.

Then, we can write the following function in ML
fun diag(s) = not(execute(s,s))

and the function computed by diag would not be
programmable in PerfectML.

Good luck for the final exam. You can rest assured that it will be solvable!



