CS109A Notes for Lecture 1/26/96

Running Time

A program or algorithm has a running time T'(n),
where n is the measure of the size of the input.

e T(n) is the largest amount of time the pro-
gram takes on any input of size n.

Example: For a sorting algorithm, we nor-
mally choose n to be the number of elements to
be sorted. For Mergesort, T'(n) = nlogn; for
Selection-sort or Quicksort, T'(n) = n?.

e But there is an unknowable constant factor
that depends on various factors, such as ma-
chine speed, quality of the compiler, load on
the machine.

Why Measure Running Time?

¢ Guides our selection of an algorithm to im-
plement.

e Helps us explore for better solutions without
expensive implementation, test, and measure-
ment.

Arguments Against Running-Time Mea-
surement

o  Algorithms often perform much better on av-
erage than the running time implies (e.g.,
quicksort is nlogn on a “random” list but
n? in the worst case, where each division sep-

arates out only 1 element).

O But for most algorithms, the worst case
is a good predictor of typical behavior.

O When average and worst cases are radi-
cally different, we can do an average-case
analysis.

e Who cares? In a few years machines will be
so fast that even bad algorithms will be fast.



OO0 The faster computers get, the more we
find to do with them and the larger the
size of the problems we try to solve.

O Asymptotic behavior (growth rate) of the
running time becomes more important,
not less, because we are getting closer to
the asymptote.

o Constant factors hidden by “big-oh” are more
important than the growth rate of running
time.

O  Only for small instances, and anything is
OK when your input is small.

e Benchmarking (running program on a popu-
lar set of test cases) is easier.

O Sometimes true, but you’ve committed
yourself to an implementation already.

Big-Oh

e A notation to let us ignore the unknowable
constant factors and focus on growth rate of
the running time.

Say T'(n) is O(f(n)) if for “large” n, T(n) is no

more than proportional to f(n).

e More formally: there exist constants ny and
¢ > 0 such that for all n > ng we have T'(n) <

e ng and c are called witnesses to the fact that
T(n) is O(f(n))

Example: 10n? + 50n + 100 is O(n?). Pick wit-
nesses ng = 1 and ¢ = 160. Then for any n > 1,
10n2 + 50n + 100 < 160n2.

e Other choices of witness are possible, e.g.,

(no = 10, ¢ = 16).

e  General rule: any polynomial is big-oh of its
leading term with coefficient of 1.



Example: n'® is O(2™).

Note that n'® can be very large compared to
2" for “small” n.

O n!® < 2™ is the same as saying
10log,n < n. (False for n = 32; true
for n = 64.)

Pick witnesses ng = 64 and ¢ = 1. Forn > 64
we have n'? <1 x 27.

Growth Rates of Common Functions

The base of a logarithm doesn’t matter.
log, n is O(log, n) for any bases a and b be-
cause log, n = log, blog, n (i.e., witnesses are
ng = 1,c = log, b).

0 Thus, we omit the base when talking
about big-oh.

Logarithms grow slower than any power of n,
e.g. logn is O(n'/1?).

An ezponential is ¢™ for some constant ¢ > 1.

Polynomials grow slower than any exponen-

tial, e.g. n'% is O(1.001™).

Generally, exponential running times are im-
possibly slow; polynomial running times are
tolerable.

Proofs That a Big-oh Relationship is False

Example: n® is not O(n?). In proof: suppose
it were. Then there would be witnesses ny and ¢
such that for all n > ngy we have n? < ¢n?.

Choose 1 to be

1.
2.

At least as large as nyg.
At least as large as 2c.

n3 < en? holds for n = ny, because n; > ng
by (1).
If n? < cn?, then ny <e.

But by (2), n1 > 2¢.



Since ¢ > 0 (holds for any witness ¢), it is not
possible that 2¢ < n; <e.

Thus, our assumption that we could find wit-
nesses ng and ¢ was wrong, and we conclude
n® is not O(n?).

General Idea of Non-Big-Oh Proofs

w N =

Template p. 101 of FCS.
Assume witnesses 1y and c exist.
Select n; in terms of ny and c.

Show that ny > ng, so the inequality T'(n) <
cf(n) must hold for n = n4.

Show that for the particular n; chosen,

T(n1) > cf(n1).

Conclude from (3) and (4) that ny and ¢ are
not really witnesses. Since we assumed noth-
ing special about witnesses ny and ¢, we con-

clude that no witnesses exist, and therefore
the big-oh relationship does not hold.



