
CS109A Notes for Lecture 1/26/96Running TimeA program or algorithm has a running time T (n),where n is the measure of the size of the input.� T (n) is the largest amount of time the pro-gram takes on any input of size n.Example: For a sorting algorithm, we nor-mally choose n to be the number of elements tobe sorted. For Mergesort, T (n) = n log n; forSelection-sort or Quicksort, T (n) = n2.� But there is an unknowable constant factorthat depends on various factors, such as ma-chine speed, quality of the compiler, load onthe machine.Why Measure Running Time?� Guides our selection of an algorithm to im-plement.� Helps us explore for better solutions withoutexpensive implementation, test, and measure-ment.Arguments Against Running-Time Mea-surement� Algorithms often perform much better on av-erage than the running time implies (e.g.,quicksort is n log n on a \random" list butn2 in the worst case, where each division sep-arates out only 1 element).But for most algorithms, the worst caseis a good predictor of typical behavior.When average and worst cases are radi-cally di�erent, we can do an average-caseanalysis.� Who cares? In a few years machines will beso fast that even bad algorithms will be fast.1



The faster computers get, the more we�nd to do with them and the larger thesize of the problems we try to solve.Asymptotic behavior (growth rate) of therunning time becomes more important,not less, because we are getting closer tothe asymptote.� Constant factors hidden by \big-oh" are moreimportant than the growth rate of runningtime.Only for small instances, and anything isOK when your input is small.� Benchmarking (running program on a popu-lar set of test cases) is easier.Sometimes true, but you've committedyourself to an implementation already.Big-Oh� A notation to let us ignore the unknowableconstant factors and focus on growth rate ofthe running time.Say T (n) is O�f(n)� if for \large" n, T (n) is nomore than proportional to f(n).� More formally: there exist constants n0 andc > 0 such that for all n � n0 we have T (n) �cf(n).� n0 and c are called witnesses to the fact thatT (n) is O�f(n)�.Example: 10n2 + 50n + 100 is O(n2). Pick wit-nesses n0 = 1 and c = 160. Then for any n � 1,10n2 + 50n+ 100 � 160n2.� Other choices of witness are possible, e.g.,(n0 = 10; c = 16).� General rule: any polynomial is big-oh of itsleading term with coe�cient of 1.2



Example: n10 is O(2n).� Note that n10 can be very large compared to2n for \small" n.n10 < 2n is the same as saying10 log2 n � n. (False for n = 32; truefor n = 64.)� Pick witnesses n0 = 64 and c = 1. For n � 64we have n10 � 1� 2n.Growth Rates of Common Functions� The base of a logarithm doesn't matter.loga n is O(logb n) for any bases a and b be-cause loga n = loga b logb n (i.e., witnesses aren0 = 1; c = loga b).Thus, we omit the base when talkingabout big-oh.� Logarithms grow slower than any power of n,e.g. log n is O(n1=10).� An exponential is cn for some constant c > 1.� Polynomials grow slower than any exponen-tial, e.g. n10 is O(1:001n).� Generally, exponential running times are im-possibly slow; polynomial running times aretolerable.Proofs That a Big-oh Relationship is FalseExample: n3 is not O(n2). In proof: supposeit were. Then there would be witnesses n0 and csuch that for all n � n0 we have n3 � cn2.Choose n1 to be1. At least as large as n0.2. At least as large as 2c.� n3 � cn2 holds for n = n1, because n1 � n0by (1).� If n31 � cn21, then n1 � c.� But by (2), n1 � 2c.3



� Since c > 0 (holds for any witness c), it is notpossible that 2c � n1 � c.� Thus, our assumption that we could �nd wit-nesses n0 and c was wrong, and we concluden3 is not O(n2).General Idea of Non-Big-Oh Proofs� Template p. 101 of FCS.1. Assume witnesses n0 and c exist.2. Select n1 in terms of n0 and c.3. Show that n1 � n0, so the inequality T (n) �cf(n) must hold for n = n1.4. Show that for the particular n1 chosen,T (n1) > cf(n1).5. Conclude from (3) and (4) that n0 and c arenot really witnesses. Since we assumed noth-ing special about witnesses n0 and c, we con-clude that no witnesses exist, and thereforethe big-oh relationship does not hold.

4


