CHAPTER

Database

0
= 8.1

The Relational

Data Model

One of the most important applications for computers is storing and managing
information. The manner in which information is organized can have a profound
effect on how easy it is to access and manage. Perhaps the simplest but most
versatile way to organize information is to store it in tables.

The relational model is centered on this idea: the organization of data into
collections of two-dimensional tables called “relations.” We can also think of the
relational model as a generalization of the set data model that we discussed in
Chapter 7, extending binary relations to relations of arbitrary arity.

Originally, the relational data model was developed for databases — that is,
information stored over a long period of time in a computer system — and for
database management systems, the software that allows people to store, access, and
modify this information. Databases still provide us with important motivation for
understanding the relational data model. They are found today not only in their
original, large-scale applications such as airline reservation systems or banking sys-
tems, but in desktop computers handling individual activities such as maintaining
expense records, homework grades, and many other uses.

Other kinds of software besides database systems can make good use of tables
of information as well, and the relational data model helps us design these tables and
develop the data structures that we need to access them efficiently. For example,
such tables are used by compilers to store information about the variables used in
the program, keeping track of their data type and of the functions for which they
are defined.

What This Chapter Is About

There are three intertwined themes in this chapter. First, we introduce you to the
design of information structures using the relational model. We shall see that

0 Tables of information, called “relations,” are a powerful and flexible way to
represent information (Section 8.2).

403



0
00 8.2

Attribute

404 THE RELATIONAL DATA MODEL

O An important part of the design process is selecting “attributes,” or properties
of the described objects, that can be kept together in a table, without introduc-
ing “redundancy,” a situation where a fact is repeated several times (Section
8.2).

O The columns of a table are named by attributes. The “key” for a table (or
relation) is a set of attributes whose values uniquely determine the values of
a whole row of the table. Knowing the key for a table helps us design data
structures for the table (Section 8.3).

0 Indexes are data structures that help us retrieve or change information in tables
quickly. Judicious selection of indexes is essential if we want to operate on our
tables efficiently (Sections 8.4, 8.5, and 8.6).

The second theme is the way data structures can speed access to information. We
shall learn that

0 Primary index structures, such as hash tables, arrange the various rows of a
table in the memory of a computer. The right structure can enhance efficiency
for many operations (Section 8.4).

00 Secondary indexes provide additional structure and help perform other opera-
tions efficiently (Sections 8.5 and 8.6).

Our third theme is a very high-level way of expressing “queries,” that is, questions
about the information in a collection of tables. The following points are made:

O Relational algebra is a powerful notation for expressing queries without giving
details about how the operations are to be carried out (Section 8.7).

0 The operators of relational algebra can be implemented using the data struc-
tures discussed in this chapter (Section 8.8).

O In order that we may get answers quickly to queries expressed in relational
algebra, it is often necessary to “optimize” them, that is, to use algebraic laws
to convert an expression into an equivalent expression with a faster evaluation
strategy. We learn some of the techniques in Section 8.9.

Relations

Section 7.7 introduced the notion of a “relation” as a set of tuples. Each tuple of
a relation is a list of components, and each relation has a fixed arity, which is the
number of components each of its tuples has. While we studied primarily binary
relations, that is, relations of arity 2, we indicated that relations of other arities
were possible, and indeed can be quite useful.

The relational model uses a notion of “relation” that is closely related to this
set-theoretic definition, but differs in some details. In the relational model, in-
formation is stored in tables such as the one shown in Fig. 8.1. This particular
table represents data that might be stored in a registrar’s computer about courses,
students who have taken them, and the grades they obtained.

The columns of the table are given names, called attributes. In Fig. 8.1, the
attributes are Course, Studentld, and Grade.



Tuple

Relation scheme

SEC. 8.2 RELATIONS 405

Course | Studentld | Grade
CS101 12345 A
CS101 67890 B
EE200 12345 C
EE200 22222 B+
CS101 33333 A—
PH100 67890 C+

Fig. 8.1. A table of information.

Relations as Sets Versus Relations as Tables

In the relational model, as in our discussion of set-theoretic relations in Section 7.7,
a relation is a set of tuples. Thus the order in which the rows of a table are listed
has no significance, and we can rearrange the rows in any way without changing
the value of the table, just as we can we rearrange the order of elements in a set
without changing the value of the set.

The order of the components in each row of a table is significant, since different
columns are named differently, and each component must represent an item of the
kind indicated by the header of its column. In the relational model, however, we
may permute the order of the columns along with the names of their headers and
keep the relation the same. This aspect of database relations is different from set-
theoretic relations, but rarely shall we reorder the columns of a table, and so we can
keep the same terminology. In cases of doubt, the term “relation” in this chapter
will always have the database meaning.

Each row in the table is called a tuple and represents a basic fact. The first
row, (CS101, 12345, A), represents the fact that the student with ID number 12345
got an A in the course CS101.

A table has two aspects:

1. The set of column names, and

2. The rows containing the information.

The term “relation” refers to the latter, that is, the set of rows. Each row represents
a tuple of the relation, and the order in which the rows appear in the table is
immaterial. No two rows of the same table may have identical values in all columns.

Item (1), the set of column names (attributes) is called the scheme of the
relation. The order in which the attributes appear in the scheme is immaterial, but
we need to know the correspondence between the attributes and the columns of
the table in order to write the tuples properly. Frequently, we shall use the scheme
as the name of the relation. Thus the table in Fig. 8.1 will often be called the
Course-Studentld-Grade relation. Alternatively, we could give the relation a name,

like C'SG.



Database
scheme

406 THE RELATIONAL DATA MODEL

Representing Relations

As sets, there are a variety of ways to represent relations by data structures. A
table looks as though its rows should be structures, with fields corresponding to
the column names. For example, the tuples in the relation of Fig. 8.1 could be
represented by structures of the type

struct CSG {
char Coursel[5];
int Studentld;
char Grade[2];
};

The table itself could be represented in any of a number of ways, such as

1. An array of structures of this type.

2. A linked list of structures of this type, with the addition of a next field to link
the cells of the list.

Additionally, we can identify one or more attributes as the “domain” of the relation
and regard the remainder of the attributes as the “range.” For instance, the relation
of Fig. 8.1 could be viewed as a relation from domain Course to a range consisting of
Studentld-Grade pairs. We could then store the relation in a hash table according
to the scheme for binary relations that we discussed in Section 7.9. That is, we hash
Course values, and the elements in buckets are Course-StudentId-Grade triples. We
shall take up this issue of data structures for relations in more detail, starting in
Section 8.4.

Databases

A collection of relations is called a database. The first thing we need to do when
designing a database for some application is to decide on how the information to
be stored should be arranged into tables. Design of a database, like all design
problems, is a matter of business needs and judgment. In an example to follow, we
shall expand our application of a registrar’s database involving courses, and thereby
expose some of the principles of good database design.

Some of the most powerful operations on a database involve the use of several
relations to represent coordinated types of data. By setting up appropriate data
structures, we can jump from one relation to another efficiently, and thus obtain
information from the database that we could not uncover from a single relation.
The data structures and algorithms involved in “navigating” among relations will
be discussed in Sections 8.6 and 8.8.

The set of schemes for the various relations in a database is called the scheme
of the database. Notice the difference between the scheme for the database, which
tells us something about how information is organized in the database, and the set
of tuples in each relation, which is the actual information stored in the database.

Example 8.1. Let us supplement the relation of Fig. 8.1, which has scheme
{Course, Studentld, Grade}

with four other relations. Their schemes and intuitive meanings are:



SEC. 8.2 RELATIONS 407

1. {Studentld, Name, Address, Phone}. The student whose ID appears in the
first component of a tuple has name, address, and phone number equal to the
values appearing in the second, third, and fourth components, respectively.

2. {Course, Prerequisite}. The course named in the second component of a tuple
is a prerequisite for the course named in the first component of that tuple.

3. {Course, Day, Hour}. The course named in the first component meets on
the day specified by the second component, at the hour named in the third
component.

4. {Course, Room}. The course named in the first component meets in the room
indicated by the second component.

These four schemes, plus the scheme {Course, Studentld, Grade} mentioned
earlier, form the database scheme for a running example in this chapter. We also
need to offer an example of a possible “current value” for the database. Figure 8.1
gave an example for the Course-Studentld-Grade relation, and example relations
for the other four schemes are shown in Fig. 8.2. Keep in mind that these relations
are all much shorter than we would find in reality; we are just offering some sample
tuples for each. [J

Queries on a Database

We saw in Chapter 7 some of the most important operations performed on relations
and functions; they were called insert, delete, and lookup, although their appropri-
ate meanings differed, depending on whether we were dealing with a dictionary, a
function, or a binary relation. There is a great variety of operations one can perform
on database relations, especially on combinations of two or more relations, and we
shall give a feel for this spectrum of operations in Section 8.7. For the moment, let
us focus on the basic operations that we might perform on a single relation. These
are a natural generalization of the operations discussed in the previous chapter.

1. insert(t, R). We add the tuple ¢ to the relation R, if it is not already there.
This operation is in the same spirit as insert for dictionaries or binary relations.

2. delete(X,R). Here, X is intended to be a specification of some tuples. It
consists of components for each of the attributes of R, and each component
can be either
a) A value, or
b) The symbol *, which means that any value is acceptable.

The effect of this operation is to delete all tuples that match the specification
X. For example, if we cancel CS101, we want to delete all tuples of the

Course-Day-Hour
relation that have Course = “CS101.” We could express this condition by
delete(( “CS1017, %, *), Course—Day—Hour)

That operation would delete the first three tuples of the relation in Fig. 8.2(c),
because their first components each are the same value as the first component
of the specification, and their second and third components all match *, as any
values do.



408 THE RELATIONAL DATA MODEL

Studentld Name

Address Phone

12345 C. Brown
67890 L. Van Pelt
22222 P. Patty

12 Apple St. 555-1234
34 Pear Ave. 555-5678
56 Grape Blvd. | 555-9999

(a) StudentId-Name-Address-Phone

Course Prerequisite
CS101 CS100
EE200 EE005
EE200 CS100
CS120 CS101
CS121 CS120
CS205 CS101
CS206 CS121
CS206 CS205

(b) Course-Prerequisite

Course Day Hour
CS101 M 9AM
CS101 W 9AM
CS101 F 9AM
EE200 Tu 10AM
EE200 W 1PM
EE200 Th 10AM

(¢) Course-Day-Hour

Course Room

CS101 Turing Aud.
EE200 25 Ohm Hall
PH100 Newton Lab.

(d) Course-Room

Fig. 8.2. Sample relations.

3. lookup(X, R). The result of this operation is the set of tuples in R that match
the specification X ; the latter is a symbolic tuple as described in the preceding
item (2). For example, if we wanted to know for what courses CS101 is a

prerequisite, we could ask

look;up((*7 “CS1017), Course—Prerequisite)

The result would be the set of two matching tuples



SEC. 8.2 RELATIONS 409

(CS120, CS101)
(CS205, CS101)

Example 8.2. Here are some more examples of operations on our registrar’s
database:

a) l00kup((“CSlOl”, 12345, %), Course—StudentId—Grade) finds the grade of the
student with ID 12345 in CS101. Formally, the result is the one matching
tuple, namely the first tuple in Fig. 8.1.

b) l00kup((“CS205”, “CS1207), Course—Prerequisite) asks whether CS120 is a
prerequisite of CS205. Formally, it produces as an answer either the single
tuple (“CS205”, “CS120”) if that tuple is in the relation, or the empty set if
not. For the particular relation of Fig. 8.2(b), the empty set is the answer.

c) delete((“CS101”, %), Course-Room) drops the first tuple from the relation of
Fig. 8.2(d).

d) insert((“CS205”, “CS120”), Course-Prerequisite) makes CS120 a prerequisite
of CS205.

e) insert((“CS205”, “CS101”), Course-Prerequisite) has no effect on the relation
of Fig. 8.2(b), because the inserted tuple is already there. O

The Design of Data Structures for Relations

In much of the rest of this chapter, we are going to discuss the issue of how one selects
a data structure for a relation. We have already seen some of the problem when
we discussed the implementation of binary relations in Section 7.9. The relation
Variety-Pollinizer was given a hash table on Variety as its data structure, and we
observed that the structure was very useful for answering queries like

l ookup(( “Wickson”, ), Variety—Pollinizer)

because the value “Wickson” lets us find a specific bucket in which to search. But
that structure was of no help answering queries like

l ookup((*, “Wickson”), Variety—Pollinizer)

because we would have to look in all buckets.

Whether a hash table on Variety is an adequate data structure depends on the
expected mix of queries. If we expect the variety always to be specified, then a hash
table is adequate, and if we expect the variety sometimes not to be specified, as in
the preceding query, then we need to design a more powerful data structure.

The selection of a data structure is one of the essential design issues we tackle
in this chapter. In the next section, we shall generalize the basic data structures
for functions and relations from Sections 7.8 and 7.9, to allow for several attributes
in either the domain or the range. These structures will be called “primary in-
dex structures.” Then, in Section 8.5 we introduce “secondary index structures,”
which are additional structures that allow us to answer a greater variety of queries
efficiently. At that point, we shall see how both the above queries, and others we
might ask about the Variety-Pollinizer relation, can be answered efficiently, that is,
in about as much time as it takes to list all the answers.



410 THE RELATIONAL DATA MODEL

Design I: Selecting a Database Scheme

An important issue when we use the relational data model is how we select an
appropriate database scheme. For instance, why did we separate information about
courses into five relations, rather than have one table with scheme

{Course, Studentld, Grade, Prerequisite, Day, Hour, Room}
The intuitive reason is that

0 If we combine into one relation scheme information of two independent types,
we may be forced to repeat the same fact many times.

For example, prerequisite information about a course is independent of day and
hour information. If we were to combine prerequisite and day-hour information, we
would have to list the prerequisites for a course in conjunction with every meeting
of the course, and vice versa. Then the data about EE200 found in Fig. 8.2(b) and
(¢), if put into a single relation with scheme

{Course, Prerequisite, Day, Hour}
would look like

Course Prerequisite Day Hour
EE200 EE005 Tu 10AM
EE200 EE005 W 1PM
EE200 EE005 Th 10AM
EE200 CS100 Tu 10AM
EE200 CS100 W 1PM
EE200 CS100 Th 10AM

Notice that we take six tuples, with four components each, to do the work previously
done by five tuples, with two or three components each.

0 Conversely, do not separate attributes when they represent connected informa-
tion.

For example, we cannot replace the Course-Day-Hour relation by two relations, one
with scheme Course-Day and the other with scheme Course-Hour. For then, we
could only tell that EE200 meets Tuesday, Wednesday, and Thursday, and that it
has meetings at 10AM and 1PM, but we could not tell when it met on each of its
three days.

EXERCISES

8.2.1: Give appropriate structure declarations for the tuples of the relations of Fig.
8.2(a) through (d).

8.2.2*: What is an appropriate database scheme for

a) A telephone directory, including all the information normally found in a direc-
tory, such as area codes.



IZIEIZI 8.3

SEC. 8.3 KEYS 411

b) A dictionary of the English language, including all the information normally
found in the dictionary, such as word origins and parts of speech.

¢) A calendar, including information normally found on a calendar such as holi-
days, good for the years 1 through 4000.

Keys

Many database relations can be considered functions from one set of attributes to
the remaining attributes. For example, we might choose to view the

Course-StudentId-Grade

relation as a function whose domain is Course-Studentld pairs and whose range
is Grade. Because functions have somewhat simpler data structures than general
relations, it helps if we know a set of attributes that can serve as the domain of a
function. Such a set of attributes is called a “key.”

More formally, a key for a relation is a set of one or more attributes such that
under no circumstances will the relation have two tuples whose values agree in each
column headed by a key attribute. Frequently, there are several different sets of
attributes that could serve as a key for a relation, but we normally pick one and
refer to it as “the key.”

Finding Keys

Because keys can be used as the domain of a function, they play an important role
in the next section when we discuss primary index structures. In general, we cannot
deduce or prove that a set of attributes forms a key; rather, we need to examine
carefully our assumptions about the application being modeled and how they are
reflected in the database scheme we are designing. Only then can we know whether
it is appropriate to use a given set of attributes as a key. There follows a sequence
of examples that illustrate some of the issues.

Example 8.3. Consider the relation StudentId-Name-Address-Phone of Fig.
8.2(a). Evidently, the intent is that each tuple gives information about a different
student. We do not expect to find two tuples with the same ID number, because
the whole purpose of such a number is to give each student a unique identifier.

If we have two tuples with identical student ID numbers in the same relation,
then one of two things has gone wrong.

1. If the two tuples are identical in all components, then we have violated our
assumption that a relation is a set, because no element can appear more than
once in a set.

2. If the two tuples have identical ID numbers but disagree in at least one of the
Name, Address, or Phone columns, then there is something wrong with the
data. Either we have two different students with the same ID (if the tuples
differ in Name), or we have mistakenly recorded two different addresses and/or
phone numbers for the same student.



412 THE RELATIONAL DATA MODEL

Thus it is reasonable to take the Studentld attribute by itself as a key for the
Studentld-Name-Address-Phone relation.

However, in declaring Studentld a key, we have made a critical assumption,
enunciated in item (2) preceding, that we never want to store two names, addresses,
or phone numbers for one student. But we could just as well have decided otherwise,
for example, that we want to store for each student both a home address and a
campus address. If so, we would probably be better off designing the relation to
have five attributes, with Address replaced by HomeAddress and LocalAddress,
rather than have two tuples for each student, with all but the Address component
the same. If we did use two tuples — differing in their Address components only —
then StudentId would no longer be a key but {Studentld, Address} would be a
key. O

Example 8.4. Examining the Course-StudentId-Grade relation of Fig. 8.1, we
might imagine that Grade was a key, since we see no two tuples with the same
grade. However, this reasoning is fallacious. In this little example of six tuples, no
two tuples hold the same grade; but in a typical Course-Studentld-Grade relation,
which would have thousands or tens of thousands of tuples, surely there would be
many grades appearing more than once.

Most probably, the intent of the designers of the database is that Course and
Studentld together form a key. That is, assuming students cannot take the same
course twice, we could not have two different grades assigned to the same student in
the same course; hence, there could not be two different tuples that agreed in both
Course and Studentld. Since we would expect to find many tuples with the same
Course component and many tuples with the same Studentld component, neither
Course nor Studentld by itself would be a key.

However, our assumption that students can get only one grade in any course
is another design decision that could be questioned, depending on the policy of the
school. Perhaps when course content changes sufficiently, a student may reregister
for the course. If that were the case, we would not declare { Course, StudentId} to be
a key for the Course-Studentld-Grade relation; rather, the set of all three attributes
would be the only key. (Note that the set of all attributes for a relation can always
be used as a key, since two identical tuples cannot appear in a relation.) In fact,
it would be better to add a fourth attribute, Date, to indicate when a course was
taken. Then we could handle the situation where a student took the same course
twice and got the same grade each time. [

Example 8.5. In the Course-Prerequisite relation of Fig. 8.2(b), neither at-
tribute by itself is a key, but the two attributes together form a key. O

Example 8.6. In the Course-Day-Hour relation of Fig. 8.2(c), all three at-
tributes form the only reasonable key. Perhaps Course and Day alone could be
declared a key, but then it would be impossible to store the fact that a course met
twice in one day (e.g., for a lecture and a lab). O



SEC. 8.3 KEYS 413

Design II: Selecting a Key

Determining a key for a relation is an important aspect of database design; it is
used when we select a primary index structure in Section 8.4.

O  You can’t tell the key by looking at an example value for the relation.

That is, appearances can be deceptive, as in the matter of Grade for the Course-
Studentld-Grade relation of Fig. 8.1, which we discuss in Example 8.4.

0 There is no one “right” key selection; what is a key depends on assumptions
made about the types of data the relations will hold.

Example 8.7. Finally, consider the Course-Room relation of Fig. 8.2(d). We
believe that Course is a key; that is, no course meets in two or more different rooms.
If that were not the case, then we should have combined the Course-Room relation
with the Course-Day-Hour relation, so we could tell which meetings of a course were
held in which rooms. [

EXERCISES

8.3.1*: Suppose we want to store home and local addresses and also home and
local phones for students in the StudentId-Name-Address-Phone relation.

a) What would then be the most suitable key for the relation?

b) This change causes redundancy; for example, the name of a student could be
repeated four times as his or her two addresses and two phones are combined
in all possible ways in different tuples. We suggested in Example 8.3 that one
solution is to use separate attributes for the different addresses and different
phones. What would the relation scheme be then? What would be the most
suitable key for this relation?

¢) Another approach to handling redundancy, which we suggested in Section 8.2,
is to split the relation into two relations, with different schemes, that together
hold all the information of the original. Into what relations should we split
StudentId-Name-Address-Phone, if we are going to allow multiple addresses
and phones for one student? What would be the most suitable keys for these
relations? Hint: A critical issue is whether addresses and phones are inde-
pendent. That is, would you expect a phone number to ring in all addresses
belonging to one student (in which case address and phone are independent),
or are phones associated with single addresses?

8.3.2*: The Department of Motor Vehicles keeps a database with the following
kinds of information.

The name of a driver (Name).

The address of a driver (Addr).

The license number of a driver (LicenseNo).
The serial number of an automobile (SerialNo).
The manufacturer of an automobile (Manf).
The model name of an automobile (Model).

S G W



00 8.4

Domain and
range attributes

414 THE RELATIONAL DATA MODEL

7. The registration (license plate) number of an automobile (RegNo).

The DMV wants to associate with each driver the relevant information: address,
driver’s license, and autos owned. It wants to associate with each auto the relevant
information: owner(s), serial number, manufacturer, model, and registration. We
assume that you are familiar with the basics of operation of the DMV; for example,
it strives not to issue the same license plate to two cars. You may not know (but
it is a fact) that no two autos, even with different manufacturers, will be given the
same serial number.

a) Select a database scheme — that is, a collection of relation schemes — each
consisting of a set of the attributes 1 through 7 listed above. You must allow any
of the desired connections to be found from the data stored in these relations,
and you must avoid redundancy; that is, your scheme should not require you
to store the same fact repeatedly.

b) Suggest what attributes, if any, could serve as keys for your relations from part

().

Primary Storage Structures for Relations

In Sections 7.8 and 7.9 we saw how certain operations on functions and binary
relations were speeded up by storing pairs according to their domain value. In
terms of the general insert, delete, and lookup operations that we defined in Section
8.2, the operations that are helped are those where the domain value is specified.
Recalling the Variety-Pollinizer relation from Section 7.9 again, if we regard Variety
as the domain of the relation, then we favor operations that specify a variety but
we do not care whether a pollinizer is specified.
Here are some structures we might use to represent a relation.

1. A binary search tree, with a “less than” relation on domain values to guide the
placement of tuples, can serve to facilitate operations in which a domain value
is specified.

2. An array used as a characteristic vector, with domain values as the array index,
can sometimes serve.

3. A hash table in which we hash domain values to find buckets will serve.

4. In principle, a linked list of tuples is a candidate structure. We shall ignore
this possibility, since it does not facilitate operations of any sort.

The same structures work when the relation is not binary. In place of a single
attribute for the domain, we may have a combination of k attributes, which we call
the domain attributes or just the “domain” when it is clear we are referring to a
set of attributes. Then, domain values are k-tuples, with one component for each
attribute of the domain. The range attributes are all those attributes other than
the domain attributes. The range values may also have several components, one for
each attribute of the range.

In general, we have to pick which attributes we want for the domain. The
easiest case occurs when there is one or a small number of attributes that serve
as a key for the relation. Then it is common to choose the key attribute(s) as the



Primary index

SEC. 8.4 PRIMARY STORAGE STRUCTURES FOR RELATIONS 415

domain and the rest as the range. In cases where there is no key (except the set
of all attributes, which is not a useful key), we may pick any set of attributes as
the domain. For example, we might consider typical operations that we expect to
perform on the relation and pick for the domain an attribute we expect will be
specified frequently. We shall see some concrete examples shortly.

Once we have selected a domain, we can select any of the four data structures
just named to represent the relation, or indeed we could select another structure.
However, it is common to choose a hash table based on domain values as the index,
and we shall generally do so here.

The chosen structure is said to be the primary index structure for the relation.
The adjective “primary” refers to the fact that the location of tuples is determined
by this structure. An index is a data structure that helps find tuples, given a
value for one or more components of the desired tuples. In the next section, we
shall discuss “secondary” indexes, which help answer queries but do not affect the
location of the data.

typedef struct TUPLE *TUPLELIST;
struct TUPLE {
int Studentld;
char Name[30];
char Address[50];
char Phone[8];
TUPLELIST next;
};
typedef TUPLELIST HASHTABLE[1009];

Fig. 8.3. Types for a hash table as primary index structure.

Example 8.8. Let us consider the StudentId-Name-Address-Phone relation,
which has key Studentld. This attribute will serve as our domain, and the other
three attributes will form the range. We may thus see the relation as a function
from Studentld to Name-Address-Phone triples.

As with all functions, we select a hash function that takes a domain value as
argument and produces a bucket number as result. In this case, the hash function
takes student ID numbers, which are integers, as arguments. We shall choose the
number of buckets, B, to be 1009,' and the hash function to be

h(z) =2 % 1009

This hash function maps ID’s to integers in the range 0 to 1008.

An array of 1009 bucket headers takes us to a list of structures. The structures
on the list for bucket i each represent a tuple whose Studentld component is an
integer whose remainder, when divided by 1009, is ¢. For the Studentld-Name-
Address-Phone relation, the declarations in Fig. 8.3 are suitable for the structures

11009 is a convenient prime around 1000. We might choose about 1000 buckets if there were
several thousand students in our database, so that the average number of tuples in a bucket
would be small.



416 THE RELATIONAL DATA MODEL

BUCKET
HEADERS

0

1

h to other tuples
12345 —» 237 12345 | C.Brown [12 Apple St.| 555-1234 T in bucket 237

Y

1008

Fig. 8.4. Hash table representing StudentId-Name-Address-Phone relation.

in the linked lists of the buckets and for the bucket header array. Figure 8.4 suggests
what the hash table would look like. 0

0 Example 8.9. For a more complicated example, consider the Course-StudentId-
Grade relation. We could use as a primary structure a hash table whose hash
function took as argument both the course and the student (i.e., both attributes of
the key for this relation). Such a hash function might take the characters of the
course name, treat them as integers, add those integers to the student ID number,
and divide by 1009, taking the remainder.

That data structure would be useful if all we ever did was look up grades, given
a course and a student ID — that is, we performed operations like

lookup(( “CS1017, 12345, %), Course—StudentId—Grade)
However, it is not useful for operations such as
1.  Finding all the students taking CS101, or
2. Finding all the courses being taken by the student whose ID is 12345.

In either case, we would not be able to compute a value for the hash function. For
example, given only the course, we do not have a student ID to add to the sum of
the characters converted to integers, and thus have no value to divide by 1009 to
get the bucket number.

However, suppose it is quite common to ask queries like, “Who is taking
CS1017?,” that is,

lookup(( “CS1017, %, %), Course—StudentId—Grade)



SEC. 8.4 PRIMARY STORAGE STRUCTURES FOR RELATIONS 417

Design III: Choosing a Primary Index

O It is often useful to make the key for a relation scheme be the domain of a
function and the remaining attributes be the range.

Then, the relation can be implemented as if it were a function, using a primary
index such as a hash table, with the hash function based on the key attributes.

O However, if the most common type of query specifies values for an attribute
or a set of attributes that do not form a key, we may prefer to use this set of
attributes as the domain, with the other attributes as the range.

We may then implement this relation as a binary relation (e.g., by a hash table).
The only problem is that the division of the tuples into buckets may not be as even
as we would expect were the domain a key.

O The choice of domain for the primary index structure probably has the greatest
influence over the speed with which we can execute “typical” queries.

We might find it more efficient to use a primary structure based only on the value of
the Course component. That is, we may regard our relation as a binary relation in
the set-theoretic sense, with domain equal to Course and range the StudentId-Grade
pairs.

For instance, suppose we convert the characters of the course name to integers,
sum them, divide by 197, and take the remainder. Then the tuples of the

Course-Studentld-Grade

relation would be divided by this hash function into 197 buckets, numbered 0
through 196. However, if CS101 has 100 students, then there would be at least
100 structures in its bucket, regardless of how many buckets we chose for our hash
table; that is the disadvantage of using something other than a key on which to
base our primary index structure. There could even be more than 100 structures,
if some other course were hashed to the same bucket as CS101.

On the other hand, we still get help when we want to find the students in a
given course. If the number of courses is significantly more than 197, then on the
average, we shall have to search something like 1/197 of the entire

Course-Studentld-Grade

relation, which is a great saving. Moreover, we get some help when performing
operations like looking up a particular student’s grade in a particular course, or
inserting or deleting a Course-StudentId-Grade tuple. In each case, we can use the
Course value to restrict our search to one of the 197 buckets of the hash table. The
only sort of operation for which no help is provided is one in which no course is
specified. For example, to find the courses taken by student 12345, we must search
all the buckets. Such a query can be made more efficient only if we use a secondary
index structure, as discussed in the next section. [

Insert, Delete, and Lookup Operations

The way in which we use a primary index structure to perform the operations insert,
delete, and lookup should be obvious, given our discussion of the same subject for



418 THE RELATIONAL DATA MODEL

binary relations in Chapter 7. To review the ideas, let us focus on a hash table as
the primary index structure. If the operation specifies a value for the domain, then
we hash this value to find a bucket.

1. To insert a tuple ¢, we examine the bucket to check that ¢ is not already there,
and we create a new cell on the bucket’s list for ¢ if it is not.

2. To delete tuples that match a specification X, we find the domain value from X,
hash to find the proper bucket, and run down the list for this bucket, deleting
each tuple that matches the specification X.

3. To lookup tuples according to a specification X, we again find the domain value
from X and hash that value to find the proper bucket. We run down the list
for that bucket, producing as an answer each tuple on the list that matches the
specification X.

If the operation does not specify the domain value, we are not so fortunate.
An insert operation always specifies the inserted tuple completely, but a delete or
lookup might not. In those cases, we must search all the bucket lists for matching
tuples and delete or list them, respectively.

EXERCISES

8.4.1: The DMV database of Exercise 8.3.2 should be designed to handle the
following sorts of queries, all of which may be assumed to occur with significant
frequency.

What is the address of a given driver?
What is the license number of a given driver?
What is the name of the driver with a given license number?

= L=

What is the name of the driver who owns a given automobile, identified by its
registration number?

5. What are the serial number, manufacturer, and model of the automobile with
a given registration number?

6. Who owns the automobile with a given registration number?

Suggest appropriate primary index structures for the relations you designed in Ex-
ercise 8.3.2, using a hash table in each case. State your assumptions about how
many drivers and automobiles there are. Tell how many buckets you suggest, as
well as what the domain attribute(s) are. How many of these types of queries can
you answer efficiently, that is, in average time O(1) independent of the size of the
relations?

8.4.2: The primary structure for the Course-Day-Hour relation of Fig. 8.2(¢) might
depend on the typical operations we intended to perform. Suggest an appropriate
hash table, including both the attributes in the domain and the number of buckets
if the typical queries are of each of the following forms. You may make reasonable
assumptions about how many courses and different class periods there are. In each
case, a specified value like “CS101” is intended to represent a “typical” value; in
this case, we would mean that Course is specified to be some particular course.



0
a=a 8.5

SEC. 8.5 SECONDARY INDEX STRUCTURES 419

5
~

lookup((“CSlOl” , M), Course—Day—Hour).
lookup((*, “M”, “9AM”), Course—Day—Hour).
delete((“CSlOl”, *, %), Course—Day—Hour).
Half of type (a) and half of type (b).

Half of type (a) and half of type (c).

Half of type (b) and half of type (c).

ceo s

—
— =

Secondary Index Structures

Suppose we store the Studentld-Name-Address-Phone relation in a hash table,
where the hash function is based on the key Studentld, as in Fig. 8.4. This primary
index structure helps us answer queries in which the student ID number is specified.
However, perhaps we wish to ask questions in terms of students’ names, rather than
impersonal — and probably unknown — ID’s. For example, we might ask, “What
is the phone number of the student named C. Brown?” Now, our primary index
structure gives no help. We must go to each bucket and examine the lists of records
until we find one whose Name field has value “C. Brown.”

To answer such a query rapidly, we need an additional data structure that takes
us from a name to the tuple or tuples with that name in the Name component of
the tuple.? A data structure that helps us find tuples — given a value for a certain
attribute or attributes — but is not used to position the tuples within the overall
structure, is called a secondary index.

What we want for our secondary index is a binary relation whose

1. Domain is Name.

2. Range is the set of pointers to tuples of the Studentld-Name-Address-Phone
relation.

In general, a secondary index on attribute A of relation R is a set of pairs (v, p),
where

a) v is a value for attribute A, and

b) p is a pointer to one of the tuples, in the primary index structure for relation
R, whose A-component has the value v.

The secondary index has one such pair for each tuple with the value v in attribute
A.

We may use any of the data structures for binary relations for storing secondary
indexes. Usually, we would expect to use a hash table on the value of the attribute
A. As long as the number of buckets is no greater than the number of different
values of attribute A, we can normally expect good performance — that is, O(n/B)
time, on the average — to find one pair (v,p) in the hash table, given a desired
value of v. (Here, n is the number of pairs and B is the number of buckets.) To
show that other structures are possible for secondary (or primary) indexes, in the
next example we shall use a binary search tree as a secondary index.

2 Remember that Name is not a key for the StudentIld-Name-Address-Phone relation, despite
the fact that in the sample relation of Fig. 8.2(a), there are no tuples that have the same
Name value. For example, if Linus goes to the same college as Lucy, we could find two tuples
with Name equal to “L. Van Pelt,” but with different student ID’s.



420 THE RELATIONAL DATA MODEL

Example 8.10. Let us develop a data structure for the
StudentId-Name-Address-Phone

relation of Fig. 8.2(a) that uses a hash table on Studentld as a primary index
and a binary search tree as a secondary index for attribute Name. To simplify
the presentation, we shall use a hash table with only two buckets for the primary
structure, and the hash function we use is the remainder when the student ID is
divided by 2. That is, the even ID’s go into bucket 0 and the odd ID’s into bucket
1.

typedef struct TUPLE *TUPLELIST;
struct TUPLE {

int StudentId;

char Name[30];

char Address[50];

char Phone[8];

TUPLELIST next;
};

typedef TUPLELIST HASHTABLE[2];

typedef struct NODE *TREE;
struct NODE {
char Name[30];
TUPLELIST toTuple; /* really a pointer to a tuple */
TREE 1c;
TREE rc;

Fig. 8.5. Types for a primary and a secondary index.

For the secondary index, we shall use a binary search tree, whose nodes store
elements that are pairs consisting of the name of a student and a pointer to a tuple.
The tuples themselves are stored as records, which are linked in a list to form one
of the buckets of the hash table, and so the pointers to tuples are really pointers to
records. Thus we need the structures of Fig. 8.5. The types TUPLE and HASHTABLE
are the same as in Fig. 8.3, except that we are now using two buckets rather than
1009 buckets.

The type NODE is a binary tree node with two fields, Name and toTuple, repre-
senting the element at the node — that is, a student’s name — and a pointer to a
record where the tuple for that student is kept. The remaining two fields, 1c and
rc, are intended to be pointers to the left and right children of the node. We shall
use alphabetic order on the last names of students as the “less than” order with
which we compare elements at the nodes of the tree. The secondary index itself is
a variable of type TREE — that is, a pointer to a node — and it takes us to the root
of the binary search tree.

An example of the entire structure is shown in Fig. 8.6. To save space, the
Address and Phone components of tuples are not shown. The Li’s indicate the
memory locations at which the records of the primary index structure are stored.



SEC. 8.5 SECONDARY INDEX STRUCTURES 421

BUCKET
HEADERS
L1 L2
0 » 67890 | L. Van Pelt - 22222 P. Patty | e
L3
1 » 12345 | C. Brown | e

(a) Primary index structure

C. Brown | L3

L. Van Pelt | L1

P. Patty | L2

(b) Secondary index structure

Fig. 8.6. Example of primary and secondary index structures.

Now, if we want to answer a query like “What is P. Patty’s phone number,” we
go to the root of the secondary index, look up the node with Name field “P. Patty,”
and follow the pointer in the toTuple field (shown as L2 in Fig. 8.6). That gets us
to the record for P. Patty, and from that record we can consult the Phone field and
produce the answer to the query. O

Secondary Indexes on a Nonkey Field

It appeared that the attribute Name on which we built a secondary index in Example
8.10 was a key, because no name occurs more than once. As we know, however, it
is possible that two students will have the same name, and so Name really is not a
key. Nonkeyness, as we discussed in Section 7.9, does not affect the hash table data
structure, although it may cause tuples to be distributed less evenly among buckets
than we might expect.

A binary search tree is another matter, because that data structure does not
handle two elements, neither of which is “less than” the other, as would be the case
if we had two pairs with the same name and different pointers. A simple fix to the
structure of Fig. 8.5 is to use the field toTuple as the header of a linked list of



422 THE RELATIONAL DATA MODEL

Design IV: When Should We Create a Secondary Index?

The existence of secondary indexes generally makes it easier to look up a tuple,
given the values of one or more of its components. However,

0 Each secondary index we create costs time when we insert or delete information
in the relation.

0 Thus it makes sense to build a secondary index on only those attributes that
we are likely to need for looking up data.

For example, if we never intend to find a student given the phone number alone,
then it is wasteful to create a secondary index on the Phone attribute of the

StudentId-Name-Address-Phone

relation.

pointers to tuples, one pointer for each tuple with a given value in the Name field.
For instance, if there were several P. Patty’s, the bottom node in Fig. 8.6(b) would
have, in place of L2, the header of a linked list. The elements of that list would be
the pointers to the various tuples that had Name attribute equal to “P. Patty.”

Updating Secondary Index Structures

When there are one or more secondary indexes for a relation, the insertion and
deletion of tuples becomes more difficult. In addition to updating the primary index
structure as outlined in Section 8.4, we may need to update each of the secondary
index structures as well. The following methods can be used to update a secondary
index structure for A when a tuple involving attribute A is inserted or deleted.

1. Insertion. If we insert a new tuple with value v in the component for attribute
A, we must create a pair (v, p), where p points to the new record in the primary
structure. Then, we insert the pair (v, p) into the secondary index.

2. Deletion. When we delete a tuple that has value v in the component for A, we
must first remember a pointer — call it p — to the tuple we have just deleted.
Then, we go into the secondary index structure and examine all the pairs with
first component v, until we find the one with second component p. That pair
is then deleted from the secondary index structure.

EXERCISES

8.5.1: Show how to modify the binary search tree structure of Fig. 8.5 to allow for
the possibility that there are several tuples in the Studentld-Name-Address-Phone
relation that have the same student name. Write a C function that takes a name
and lists all the tuples of the relation that have that name for the Name attribute.

8.5.2**: Suppose that we have decided to store the
StudentId-Name-Address-Phone



0
= 8.6

SEC. 8.6 NAVIGATION AMONG RELATIONS 423

relation with a primary index on Studentld. We may also decide to create some
secondary indexes. Suppose that all lookups will specify only one attribute, either
Name, Address, or Phone. Assume that 75% of all lookups specify Name, 20%
specify Address, and 5% specify Phone. Suppose that the cost of an insertion or a
deletion is 1 time unit, plus 1/2 time unit for each secondary index we choose to
build (e.g., the cost is 2.5 time units if we build all three secondary indexes). Let the
cost of a lookup be 1 unit if we specify an attribute for which there is a secondary
index, and 10 units if there is no secondary index on the specified attribute. Let a be
the fraction of operations that are insertions or deletions of tuples with all attributes
specified; the remaining fraction 1 — a of the operations are lookups specifying one
of the attributes, according to the probabilities we assumed [e.g., .75(1 — a) of all
operations are lookups given a Name value]. If our goal is to minimize the average
time of an operation, which secondary indexes should we create if the value of
parameter a is (a) .01 (b) .1 (¢) .5 (d) .9 (e) .99?

8.5.3: Suppose that the DMV wants to be able to answer the following types of
queries efficiently, that is, much faster than by searching entire relations.

i)  Given a driver’s name, find the driver’s license(s) issued to people with that
name.

14) Given a driver’s license number, find the name of the driver.

i41) Given a driver’s license number, find the registration numbers of the auto(s)
owned by this driver.

iv) Given an address, find all the drivers’ names at that address.

v) Given a registration number (i.e., a license plate), find the driver’s license(s)
of the owner(s) of the auto.

Suggest a suitable data structure for your relations from Exercise 8.3.2 that will
allow all these queries to be answered efficiently. It is sufficient to suppose that
each index will be built from a hash table and tell what the primary and secondary
indexes are for each relation. Explain how you would then answer each type of

query.

8.5.4*: Suppose that it is desired to find efficiently the pointers in a given secondary
index that point to a particular tuple ¢ in the primary index structure. Suggest
a data structure that allows us to find these pointers in time proportional to the
number of pointers found. What operations are made more time-consuming because
of this additional structure?

Navigation among Relations

Until now, we have considered only operations involving a single relation, such
as finding a tuple given values for one or more of its components. The power of
the relational model can be seen best when we consider operations that require
us to “navigate,” or jump from one relation to another. For example, we could
answer the query “What grade did the student with ID 12345 get in CS1017?” by
working entirely within the Course-Studentld-Grade relation. But it would be more
natural to ask, “What grade did C. Brown get in CS101?” That query cannot be
answered within the Course-StudentId-Grade relation alone, because that relation
uses student ID’s, rather than names.



424 THE RELATIONAL DATA MODEL

To answer the query, we must first consult the Studentld-Name-Address-Phone
relation and translate the name “C. Brown” into a student ID (or ID’s, since it is
possible that there are two or more students with the same name and different ID’s).
Then, for each such ID, we search the Course-StudentIld-Grade relation for tuples
with this ID and with course component equal to “CS101.” From each such tuple
we can read the grade of some student named C. Brown in course CS101. Figure
8.7 suggests how this query connects given values to the relations and to the desired
answers.

“C. Brown”

'

“CS101” | Studentld Name Address Phone

‘ Y

Course Studentld Grade

¢

answers

Fig. 8.7. Diagram of the query “What grade did C. Brown
get in CS1017”

If there are no indexes we can use, then answering this query can be quite
time-consuming. Suppose that there are n tuples in the

StudentIld-Name-Address-Phone

relation and m tuples in the Course-Studentld-Grade relation. Also assume that
there are k students with the name “C. Brown.” A sketch of the algorithm for
finding the grades of this student or students in CS101, assuming there are no
indexes we can use, is shown in Fig. 8.8.

(1) for each tuple ¢ in StudentIld-Name-Address-Phone do

(2) if ¢ has “C. Brown” in its Name component then begin

(3) let 7 be the StudentId component of tuple ¢;

(4) for each tuple s in Course-Studentld-Grade do

(5) if s has Course component “CS101” and
Studentld component i then

(6) print the Grade component of tuple s;

end

Fig. 8.8. Finding the grade of C. Brown in CS101.

Let us determine the running time of the program in Fig. 8.8. Starting from
the inside out, the print statement of line (6) takes O(1) time. The conditional
statement of lines (5) and (6) also takes O(1) time, since the test of line (5) is an
O(1)-time test. Since we assume that there are m tuples in the relation



SEC. 8.6 NAVIGATION AMONG RELATIONS 425

Course-StudentId-Grade

the loop of lines (4) through (6) is iterated m times and thus takes O(m) time in
total. Since line (3) takes O(1) time, the block of lines (3) to (6) takes O(m) time.

Now consider the if-statement of lines (2) to (6). Since the test of line (2) takes
O(1) time, the entire if-statement takes O(1) time if the condition is false and O(m)
time if it is true. However, we have assumed that the condition is true for k tuples
and false for the rest; that is, there are k tuples ¢ for which the name component
is “C. Brown.” Since there is so much difference between the times taken when
the condition is true and when it is false, we should be careful how we analyze the
for-loop of lines (1) to (6). That is, instead of counting the number of times around
the loop and multiplying by the greatest time the body can take, we shall consider
separately the two outcomes of the test at line (2).

First, we go around the loop n times, because that is the number of different
values of ¢. For the k tuples ¢ on which the test at line (2) is true, we take O(m)
time each, or a total of O(km) time. For the remaining n — k tuples for which the
test is false, we take O(1) time per tuple, or O(n — k) total. Since k is presumably
much less than n, we can take O(n) as a simpler but tight upper bound instead of
O(n — k). Thus the cost of the entire program is O(n + km). In the likely case
where k = 1, when there is only one student with the given name, the time required,
O(n + m), is proportional to the sum of the sizes of the two relations involved. If
k is greater than 1, the time is greater still.

Speeding Navigation by Using Indexes

With the right indexes, we can answer the same query in O(k) average time — that
is, O(1) time if k, the number of students with the name C. Brown, is 1. That
makes sense, since all we must do is examine 2k tuples, k from each of the two
relations. The indexes allow us to focus on the needed tuples in O(1) average time
for each tuple, if a hash table with the right number of buckets is used. If we have an
index on Name for the Studentld-Name-Address-Phone relation, and an index on
the combination of Course and Studentld for the Course-StudentId-Grade relation,
then the algorithm for finding the grade of C. Brown in CS101 is as sketched in Fig.
8.9.

(1) wusing the index on Name, find each tuple in the
Studentld-Name-Address-Grade relation that has Name
component “C. Brown”;
(2) for each tuple t found in (1) do begin
) let 7 be the Studentld component of tuple ¢;

(4) using the index on Course and Studentld in the
Course-StudentId-Grade relation, find the tuple
s with Course component “CS101” and StudentId
component %;

(5) print the Grade component of tuple s;

end

Fig. 8.9. Finding the grade of C. Brown in CS101 using indexes.



426 THE RELATIONAL DATA MODEL

Let us assume that the index on Name is a hash table with about n buckets,
used as a secondary index. Since n is the number of tuples in the

StudentId-Name-Address-Grade

relation, the buckets have O(1) tuples each, on the average. Finding the bucket for
Name value “C. Brown” takes O(1) time. If there are k tuples with this name, it
will take O(k) time to find these tuples in the bucket and O(1) time to skip over
possible other tuples in the bucket. Thus line (1) of Fig. 8.9 takes O(k) time on the
average.

The loop of lines (2) through (5) is executed k times. Let us suppose we store
the & tuples ¢ that were found at line (1) in a linked list. Then the cost of going
around the loop by finding the next tuple ¢ or discovering that there are no more
tuples is O(1), as are the costs of lines (3) and (5). We claim that line (4) can also
be executed in O(1) time, and therefore the loop of lines (2) to (5) takes O(k) time.

We analyze line (4) as follows. Line (4) requires the lookup of a single tuple,
given its key value. Let us suppose that the Course-StudentId-Grade relation has a
primary index on its key, {Course, StudentId}, and that this index is a hash table
with about m buckets. Then the average number of tuples per bucket is O(1), and
therefore line (4) of Fig. 8.9 takes O(1) time. We conclude that the body of the
loop of lines (2) through (5) takes O(1) average time, and thus the entire program
of Fig. 8.9 takes O(k) average time. That is, the cost is proportional to the number
of students with the particular name we query about, regardless of the size of the
relations involved.

Navigating over Many Relations

The same techniques that let us navigate efficiently from one relation to another
also allow navigation involving many relations. For example, suppose we wanted to
know, “Where is C. Brown 9AM Monday mornings?” Assuming that he is in some
class, we can find the answer to this query by finding the courses C. Brown is taking,
seeing whether any of them meet 9AM Mondays, and, if so, finding the room in
which the course meets. Figure 8.10 suggests the navigation through relations from
the given value “C. Brown” to the answer.

The following plan assumes that there is a unique student named C. Brown; if
there is more than one, then we can get the rooms in which one or more of them
are found at 9AM Mondays. It also assumes that this student has not registered
for conflicting courses; that is, he is taking at most one course that meets at 9AM
on Mondays.

1.  Find the student ID for C. Brown, using the StudentId-Name-Address-Phone
relation for C. Brown. Let this ID number be .

2. Look up in the Course-StudentId-Grade relation all tuples with Studentld com-
ponent i. Let {c1,...,cx} be the set of Course values in these tuples.

3. In the Course-Day-Hour relation, look for tuples with Course component c;,
that is, one of the courses found in step (2). There should be at most one that
has both “M” in the Day component and “9AM” in the Hour component.

4. If a course c¢ is found in step (3), then look up in the Course-Room relation
the room in which course ¢ meets. That is where C. Brown will be found on
Mondays at 9AM, assuming that he hasn’t decided to take a long weekend.



SEC. 8.6 NAVIGATION AMONG RELATIONS 427

“C. Brown”

'

Studentld Name Address Phone

Y
Course Studentld Grade

Course Day Hour
|
Course Room
answers

Fig. 8.10. Diagram of the query “Where is C. Brown
at 9AM on Mondays?”

If we do not have indexes, then the best we can hope for is that we can execute

this plan in time proportional to the sum of the sizes of the four relations involved.
However, there are a number of indexes we can take advantage of.

a)

d)

In step (1), we can use an index on the Name component of the
StudentId-Name-Address-Phone
relation to get the student ID of C. Brown in O(1) average time.

In step (2), we can take advantage of an index on the Studentld component of
Course-Studentld-Grade to get in O(k) time all the courses C. Brown is taking,
if he is taking k courses.

In step (3), we can take advantage of an index on Course in the
Course-Day-Hour

relation to find all the meetings of the k courses from step (2) in average time
proportional to the sum of the numbers of meetings of these courses. If we
assume that no course meets more than five times a week, then there are at
most 5k tuples, and we can find them in O(k) average time. If there is no index
on Course for this relation, but there is an index on Day and/or Hour, we can
take some advantage of such an index, although we may look at far more than
O(k) tuples, depending on how many courses there are that meet on Monday
or that meet at 9AM on some day.

In step (4), we can take advantage of an index on Course for the Course-Room
relation. In that case, we can retrieve the desired room in O(1) average time.

We conclude that, with all the right indexes, we can answer this very complicated
query in O(k) average time. Since k, the number of courses taken by C. Brown, can
be assumed small — say, 5 or so — this amount of time is normally quite small,



IZIEIZI 8.7

428 THE RELATIONAL DATA MODEL

Summary: Fast Access to Relations

It is useful to review how our capability to get answers from relations has grown.
We began in Section 7.8 by using a hash table, or another structure such as a binary
search tree or a (generalized) characteristic vector, to implement functions, which
in the context of this chapter are binary relations whose domain is a key. Then, in
Section 7.9, we saw that these ideas worked even when the domain was not a key,
as long as the relation was binary.

In Section 8.4, we saw that there was no requirement that the relation be
binary; we could regard all attributes that are part of the key as a single “domain”
set, and all the other attributes as a single “range” set. Further, we saw in Section
8.4 that the domain did not have to be a key.

In Section 8.5 we learned that we could use more than one index structure on
a relation to allow fast access based on attributes that are not part of the domain,
and in Section 8.6 we saw that it is possible to use a combination of indexes on
several relations to perform complex retrievals of information in time proportional
to the number of tuples we actually visit.

and in particular is independent of the sizes of any of the relations involved.

EXERCISES

8.6.1: Suppose that the Course-Studentld-Grade relation in Fig. 8.9 did not have
an index on Course-Studentld pairs, but rather had an index on Course alone. How
would that affect the running time of Fig. 8.97 What if the index were only on
StudentId?

8.6.2: Discuss how the following queries can be answered efficiently. In each case,
state what assumptions you make about the number of elements in intermediate
sets (e.g., the number of courses taken by C. Brown), and also state what indexes
you assume exist.

a) Find all the prerequisites of the courses taken by C. Brown.
b) Find the phone numbers of all the students taking a course that meets in Turing
Aud.

¢) Find the prerequisites of the prerequisites of CS206.

8.6.3: Assuming no indexes, how much time would each of the queries in Exercise
8.6.2 take, as a function of the sizes of the relations involved, assuming straightfor-
ward iterations over all tuples, as in the examples of this section?

An Algebra of Relations

In Section 8.6 we saw that a query involving several relations can be quite compli-
cated. It is useful to express such queries in language that is much “higher-level”
than C, in the sense that the query expresses what we want (e.g., all tuples with
Course component equal to “CS101”) without having to deal with issues such as



Constant
arguments

Variable
arguments

Union,
intersection,
and difference

SEC. 8.7 AN ALGEBRA OF RELATIONS 429

lookup in indexes, as a C program would. For this purpose, a language called
relational algebra has been developed.

Like any algebra, relational algebra allows us to rephrase queries by applying
algebraic laws. Since complicated queries often have many different sequences of
steps whereby their answer can be obtained from the stored data, and since differ-
ent algebraic expressions represent different sequences of steps, relational algebra
provides an excellent example of algebra as a design theory. In fact, the improve-
ment in efficiency made possible by transforming expressions of relational algebra
is arguably the most striking example of the power of algebra that we find in com-
puter science. The ability to “optimize” queries by algebraic transformation is the
subject of Section 8.9.

Operands of Relational Algebra

In relational algebra, the operands are relations. As in other algebras, operands
can be either constants — specific relations in this case — or variables representing
unknown relations. However, whether a variable or a constant, each operand has a
specific scheme (list of attributes naming its columns). Thus a constant argument
might be shown as

Ul Oo O
o ow |
w A~ | QA

This relation has scheme {4, B, C}, and it has three tuples, (0,1,2), (0,3,4), and
(5,2,3).

A variable argument might be represented by R(A, B,C), which denotes a
relation called R, whose columns are named A, B, and C but whose set of tuples
is unknown. If the scheme {4, B, C} for R is understood or irrelevant, we can just
use R as the operand.

Set Operators of Relational Algebra

The first three operators we shall use are common set operations: union, inter-
section, and set difference, which were discussed in Section 7.3. We place one
requirement on the operands of these operators: the schemes of the two operands
must be the same. The scheme of the result is then naturally taken to be the scheme
of either argument.

Example 8.11. Let R and S be the relations of Fig. 8.11(a) and (b), re-
spectively. Note that both relations have the scheme {A, B}. The union operator
produces a relation with each tuple that appears in either R or S, or both. Note
that since relations are sets, they can never have two or more copies of the same
tuple, even though a tuple appears in both R and S, as does the tuple (0,1) in this
example. The relation R U S is shown in Fig. 8.11(c).

The intersection operator produces the relation that has those tuples appearing
in both operands. Thus the relation R N S has only the tuple (0,1), as shown in
Fig. 8.11(d). The set difference produces a relation with those tuples in the first
relation that are not also in the second. The relation R — S, shown in Fig. 8.11(e),



430 THE RELATIONAL DATA MODEL

Al B A | B
0|1 0
2 3 4 5
(a) R (b) §
A | B
0 1
2 3 A | B A | B
4 5 0 1 2 3
(c) RUS (d)RNS (e) R—S

Fig. 8.11. Examples of operations of relational algebra.

has the tuple (2,3) of R, because that tuple is not in .S, but does not have the tuple
(0,1) of R, because that tuple is also in S. O

The Selection Operator

The other operators of relational algebra are designed to perform the kinds of actions
we have studied in this chapter. For example, we have frequently wanted to extract
from a relation tuples meeting certain conditions, such as all tuples from the

Course-Studentld-Grade

relation that have Course component “CS101.” For this purpose, we use the se-
lection operator. This operator takes a single relation as operand, but also has a
conditional expression as a “parameter.” We write the selection operator o¢(R),
where o (Greek lower-case sigma) is the symbol for selection, C' is the condition,
and R is the relation operand. The condition C is allowed to have operands that
are attributes from the scheme of R, as well as constants. The operators allowed in
C' are the usual ones for C conditional expressions, that is, arithmetic comparisons
and the logical connectives.

The result of this operation is a relation whose scheme is the same as that of
R. Into this relation we put every tuple ¢ of R such that condition C' becomes true
when we substitute for each attribute A the component of tuple ¢ in the column for

A.

Example 8.12. Let C'SG stand for the Course-StudentId-Grade relation of Fig.
8.1. If we want those tuples that have Course component “CS101,” we can write
the expression

O Course=“CS101” (CSG)



SEC. 8.7 AN ALGEBRA OF RELATIONS 431

The result of this expression is a relation with the same scheme as C'SG, that is,
{Course, Studentld, Grade}, and the set of tuples shown in Fig. 8.12. That is,
the condition becomes true only for those tuples where the Course component is
“CS101.” For then, when we substitute “CS101” for Course, the condition becomes
“CS101” = “CS101.” If the tuple has any other value, such as “EE200”, in the
Course component, we get an expression like “EE200” = “CS101,” which is false. O

Course | Studentld | Grade

CS101 12345 A
CS101 67890 B
CS101 33333 A—

Fig. 8.12. Result of expression ocourse=“cs101” (CSG).

The Projection Operator

Whereas the selection operator makes a copy of the relation with some rows deleted,
we often want to make a copy in which some columns are eliminated. For that pur-
pose we have the projection operator, represented by the symbol 7. Like selection,
the projection operator takes a single relation as argument, and it also takes a pa-
rameter, which is a list of attributes, chosen from the scheme of the relation that is
the argument.

If R is a relation with set of attributes {A;,..., Ax}, and (Bi,..., By) is a list
of some of the A’s, then 7, ... B, (R), the projection of R onto attributes B, ..., By,
is the set of tuples formed as follows. Take each tuple ¢t in R, and extract its com-
ponents in attributes B, ..., By; say these components are by, ..., b,, respectively.
Then add the tuple (b1, ..., b,) to the relation mp, . g, (R). Note that two or more
tuples of R may have the same components in all of By, ..., B;,. If so, only one copy
of the projection of those tuples goes into g, . g, (R), since that relation, like all
relations, cannot have more than one copy of any tuple.

Example 8.13. Suppose we wanted to see only the student ID’s for the students
who are taking CS101. We could apply the same selection as in Example 8.12, which
gives us all the tuples for CS101 in the CSG relation, but we then must project
out the course and grade; that is, we project onto Studentld alone. The expression
that performs both operations is

T'StudentId (JCourse: “CS101” (CSG))

The result of this expression is the relation of Fig. 8.12 projected onto its StudentId
component — that is, the unary relation of Fig. 8.13. 0



432 THE RELATIONAL DATA MODEL

StudentId
12345
67890
33333

Fig. 8.13. Students taking CS101.

Joining Relations

Finally, we need a way to express the idea that two relations are connected, so that
we can navigate from one to the other. For this purpose, we use the join operator,
which we denote .2 Suppose we have two relations R and S, with sets of attributes
(schemes) {A1,...,A,} and {B1,..., By}, respectively. We pick one attribute from
each set — say, A; and B; — and these attributes become parameters of the join
operation with arguments R and S.

The join of R and S, written R Ai[fBj
R and each tuple s from S and comparing them. If the component of r for A; equals
the component of s for Bj, then we form one tuple from r and s; otherwise, no tuple
is created from the pairing of r and s. We form a tuple from r and s by taking the
components of r and following them by all the components of s, but omitting the
component for Bj, which is the same as the A; component of r anyway.

The relation R AinBj S is the set of tuples formed in this manner. Note that

S, is formed by taking each tuple r from

there could be no tuples in this relation, if no value appearing in the A; column
of R also appeared in the B; column of S. At the other extreme, every tuple of
R could have the same value in the A; component, and this component could also
appear in the B; component of every tuple in S. Then, the number of tuples in
the join would be the product of the number of tuples in R and the number in S,
since every pair of tuples would match. Generally, the truth lies somewhere between
these extremes; each tuple of R pairs with some but not all of the tuples of S.
The scheme of the joined relation is

{A1,...,An,B1,...,Bj—1,Bj41,...,Bn}

that is, the set of all attributes of R and S except for B;. However, there could be
two occurrences of the same name on this list, if one of the A’s was the same as one
of the B’s (other than B;, which is not an attribute of the join). If that is the case,
we shall insist that one of the pair of identical attributes be renamed.

Example 8.14. Suppose we want to perform some operation connecting the
Course-Day-Hour

relation (which we abbreviate to CDH), and the Course-Room relation (CR). For
instance, we might want to know at what times each room is occupied by some
course. To answer that query, we must pair each tuple from C'R with each tuple
from CDH, provided that the Course components of the two tuples are the same —

3 The “join” that we describe here is less general than that normally found in relational algebra
but will serve to get the flavor of the operator without going into all the complexities of the
subject.



SEC. 8.7 AN ALGEBRA OF RELATIONS 433

that is, if the tuples are talking about the same course. Thus if we join CR with
CDH, requiring equality of the two Course attributes, we shall get a relation with
scheme

{Course, Room, Day, Hour}

that contains each tuple (¢, 7, d, h) such that (¢, r) is a tuple of CR and (¢, d, h) is
a tuple of CDH. The expression defining this relation is

CR P CDH

Course=Course

and the value of the relation produced by this expression, assuming that the relations
have the tuples found in Fig. 8.2, is as shown in Fig. 8.14.

Course Room Day Hour
CS101 Turing Aud. M 9AM
CS101 Turing Aud. W 9AM
CS101 Turing Aud. F 9AM
EE200 25 Ohm Hall Tu 10AM
EE200 25 Ohm Hall W 1PM
EE200 25 Ohm Hall Th 10AM

Fig. 8.14. Join of CR and CDH on Course = Course.

To see how the relation of Fig. 8.14 is constructed, consider the first tuple of
CR, which is (CS101, Turing Aud.). We examine the tuples of CDH for those that
have the same Course value, that is, “CS101.” In Fig. 8.2(c), we find that the first
three tuples match, and from each of them, we construct one of the first three tuples
of Fig. 8.14. For example, the first tuple of CDH, which is (CS101, M, 9AM), joins
with tuple (CS101, Turing Aud.) to create the first tuple of Fig. 8.14. Notice how
that tuple agrees with each of the two tuples from which it is constructed.

Similarly, the second tuple of CR, (EE200, 25 Ohm Hall), shares a common
Course component with each of the last three tuples of CDH. These three pairings
give rise to the last three tuples of Fig. 8.14. The last tuple of CR,

(PH100, Newton Lab.)

does not have the same Course component as any tuple of CDH. Thus that tuple
does not contribute anything at all to the join. [

Natural Join

When we join two relations R and S, it is common that the attributes we equate
have the same name. If, in addition, R and S have no other attribute names in
common, then we can omit the parameter of the join and simply write R >t S. Such
a join is called a natural join.

For instance, the join in Example 8.14 is a natural join. The equated attributes
are both called Course, and the remaining attributes of CR and C'DH all have
distinct names. Thus we could have written this join simply as CR<x CDH.



434 THE RELATIONAL DATA MODEL

Expression Trees for Relational Algebra Expressions

Just as we draw expression trees for arithmetic expressions, we can represent a
relational algebra expression as a tree. The leaves are labeled by operands, that
is, by specific relations or variables representing relations. Each interior node is
labeled by an operator, including the parameter of the operator if it is a selection,
projection, or join (except a natural join, which needs no parameter). The children
of each interior node N are the node or nodes representing the operands to which
the operator at node N is applied.

TDay,Hour

ORoom=“Turing Aud.”

>

/N

CR CDH

Fig. 8.15. Expression tree in relational algebra.

Example 8.15. Building on Example 8.14, suppose we wanted to see not the
entire relation CR <t CDH, but just the Day-Hour pairs during which Turing Aud.
is occupied by some course. Then we need to take the relation of Fig. 8.14 and

1. Select for those tuples having Room component “Turing Aud.,” and
2. Project onto attributes Day and Hour.

The expression that performs the join, selection, and projection, in that order,
is

TDay,Hour (O'Room:“Turing Aud.” (CR > CDH))

Alternatively, we could display this expression as the tree shown in Fig. 8.15. The
relation computed at the join node appeared in Fig. 8.14. The relation for the
selection node is the first three tuples in Fig. 8.14, because these have “Turing Aud.”
in their Room component. The relation for the root of the expression is shown in
Fig. 8.16, that is, the Day and Hour components of the latter three tuples. [

Day | Hour
M 9AM
W 9AM
F 9AM

Fig. 8.16. Result of expression in Fig. 8.15.



SEC. 8.7 AN ALGEBRA OF RELATIONS 435

SQL, a Language Based on Relational Algebra

Many modern database systems use a language called SQL (Structured Query Lan-
guage) for expressing queries. While a complete guide to that language is beyond
the scope of this book, we can give the reader a feel for SQL with a few examples.

SELECT StudentId
FROM CSG
WHERE Course = "CS101"

is SQL’s way of expressing the query of Example 8.13, that is,
T'StudentId (JCourse: “CS101” (CSG))

The FROM-clause indicates the relation to which the query is applied. The WHERE-
clause gives the condition of the selection, and the SELECT-clause gives the list of
attributes onto which the answer is projected. (It is unfortunate that the keyword
SELECT in SQL corresponds not to the relational algebra operator called “selection”
but to the operator called “projection.”)

For a more complicated example, we can express the query of Example 8.15,
which is Tpay, Hour (aRoom:uTurmg Aud.” (CR > C’DH)), by the SQL program

SELECT Day, Hour
FROM CR, CDH
WHERE CR.Course = CDH.Course AND Room = "Turing Aud."

Here, the FROM-clause tells us we are going to join the two relations CR and CDH.
The first part of the WHERE-clause is the join condition; it says that the Course
attribute of CR must equal the Course attribute in CDH. The second part of the
WHERE-clause is the selection condition. The SELECT-clause gives us the attributes
in the projection.

EXERCISES

8.7.1: Express the queries of Exercise 8.4.2(a, b, c) in relational algebra. Assume
that what is wanted as an answer is the complete tuple(s).

8.7.2: Repeat Exercise 8.7.1, assuming that what is wanted is only the components
that have a * in the specification.

8.7.3: Express the queries of Exercise 8.6.2(a, b, ¢) in relational algebra. Note that
in part (c), you will have to rename some attributes in order to take the join of a
relation with itself.

8.7.4: Express the query “Where is C. Brown at 9AM on Monday?” in relational
algebra. The discussion at the end of Section 8.6 should indicate the joins necessary
to answer this query.

8.7.5: Draw expression trees for the queries of Exercise 8.7.2(a) through (c), Exer-
cise 8.7.3(a) through (c), and Exercise 8.7.4.



0
= 8.8

436 THE RELATIONAL DATA MODEL

Implementing Relational Algebra Operations

Using the right data structures and algorithms for relational algebra operations can
speed up database queries. In this section, we shall consider some of the simpler
and more common strategies for implementing relational algebra operations.

Implementing Union, Intersection, and Difference

The three basic set operations can be implemented in the same way for relations
as for sets. We can take the union of two sets or relations by sorting both sets and
merging, as discussed in Section 7.4. The intersection and difference can be taken
by a similar technique. If the relations have n tuples each, it takes O(nlogn) time
to sort them and O(n) time to do the merging, or O(nlogn) total.

However, there are several other ways we could take the union of relations R
and S, and these are sometimes more efficient. First, we might not worry about
eliminating the duplicate copy of a tuple that appears in both R and S. We could
construct R U S by making a copy of R, say, as a linked list, and then appending all
the tuples of S, without checking whether a tuple of S is also in R. This operation
can be done in time proportional to the sum of the sizes of R and S. The drawback
is that the result is not, strictly speaking, the union, since it can have duplicate
tuples. However, perhaps the presence of duplicates does not matter, because they
are expected to be rare. Or, we might find it more convenient to eliminate the
duplicates at a later stage, such as by sorting after taking the union of several more
relations.

Another option is to use an index. For example, suppose that S has an index
on attribute A, and that this attribute is a key for S. Then we can take the union
R U S by starting with the tuples of S, and examining each tuple ¢ of R, in its turn.
We find the value of ¢ in its component A — let us call it « — and use the index to
look up the tuple of S that has the value a in its A-component. If this tuple in S
is identical to t, then we do not add ¢ to the union a second time; but if there is no
tuple with key value a in S, or if the tuple with this key value differs from ¢, then
we add ¢ to the union.

If the index gives us O(1) average time to look up a tuple, given its key value,
then this method takes average time proportional to the sum of the sizes of R and
S. Moreover, the resulting relation will have no duplicates, as long as neither R nor
S has duplicates.

Implementing Projection

In principle, when we perform a projection, we have no choice but to run through
every tuple and make a copy that omits the components corresponding to attributes
not on the projection list. Indexes do not help us at all. Moreover, after we compute
the projection of each tuple, we may find that we are left with many duplicates.

For example, suppose we have a relation R with scheme (A, B,C) and we
compute 74 g(R). Even though R cannot have tuples that agree on all of A, B,
and C, it may have many tuples with the same values for attributes A and B
but different values for C. Then all these tuples will yield the same tuple in the
projection.

Thus, after we compute a projection such as S = 7w (R), for some relation R
and list of attributes L, we must eliminate duplicates. For example, we could sort
S and then run through the tuples in the sorted order. Any tuple that is the same



Nested-loop join

SEC. 8.8 IMPLEMENTING RELATIONAL ALGEBRA OPERATIONS 437

as the previous tuple in the order will be eliminated. Another way to eliminate
duplicates is to treat the relation S as an ordinary set. Each time we generate a
tuple by projecting a tuple of R onto the attributes in the list L, we insert it into
the set. As with all insertions into a set, if the element inserted is already there, we
do nothing. A structure such as a hash table will serve adequately to represent the
set S of tuples generated by the projection.

To sort the relation S before eliminating duplicates requires O(nlogn) time if
there are n tuples in the relation R. If we instead hash tuples of S as we generate
them and we use a number of buckets proportional to n, then the entire projection
will take O(n) time, on the average. Thus hashing is normally slightly better than
sorting.

Implementing Selection

When we perform a selection S = o¢(R) and there are no indexes on R, then
we have no choice but to run through all the tuples of R to apply the condition C.
Regardless of how we perform the selection, we know that there can be no duplicates
in the result S, as long as R has no duplicates.

However, if there are indexes on R, then we can often take advantage of one of
them to home in on the tuples that meet the condition C, and we can thus avoid
looking at most or all of the tuples that do not meet condition C'. The simplest
situation occurs when condition C' is of the form A = b, where A is an attribute of
R and b is a constant. If R has an index on A, then we can retrieve all the tuples
that meet this condition by looking up b in the index.

If condition C' is the logical AND of several conditions, then we can use any one
of them to look up tuples using an index, and then check the retrieved tuples to see
which ones meet the remaining conditions. For example, suppose condition C' is

(A =a)AND (B =b)

Then we have the choice of using an index on A or an index on B, if either or both
exists. Suppose that there is an index on B, and either there is no index on A or
we prefer to use the index on B. Then we get all the tuples of R that have the
value b in their B component. Each of these tuples that has a in the A component
belongs in the relation S, the result of the selection; other retrieved tuples do not.
The time taken for the selection is proportional to the number of tuples with B
value b, which generally lies somewhere between the number of tuples in R and the
number of tuples in the answer, S.

Implementing Join

Suppose we want to take the natural join of relation R with scheme {A, B} and
relation S with scheme {B,C}. Suppose also that the join is the natural join,
with equality between the B attributes of the two relations.* How we perform this
join depends on what indexes on attribute B we can find. The issues are similar to
those discussed in Section 8.6, when we considered how to navigate among relations,
because the join is the essence of navigation.

There is an obvious and slow way to compute the join, called nested-loop join.
We compare every tuple of one relation with every tuple of the other relation, as

4 We show for each relation only one attribute (A and C, respectively) that is not involved in
the join, but the ideas mentioned here clearly carry over to relations with many attributes.



Index-join

Sort-join

438 THE RELATIONAL DATA MODEL

for each tuple 7 in R do
for each tuple s in S do
if r and s agree on their B attributes then
print the tuple agreeing with r and s
on attributes A, B, and C;

However, there are several more efficient ways to take a join. One is an index-
join. Suppose S has an index on B. Then we can visit every tuple ¢ of R and find
its B component — say, b. We look up b in the index for S, and thus obtain all the
tuples that match t in B-values.

Similarly, if R has an index on B, we can run through the tuples of S. For each
such tuple, we look up the corresponding tuples of R by using the B index of R. If
both R and S have indexes on B, we can choose either one to use. As we shall see,
it makes a difference in the amount of time the join takes.

If there are no indexes on B, we can still do better than a nested-loop join
by a technique called sort-join. We begin by merging the tuples of R and S, but
reorganizing them so that the B components are first in all tuples, and tuples have
an extra component that is either R (when the tuple comes from relation R) or S
(when the tuple comes from S). That is, a tuple (a,b) from R becomes (b, a, R),
while tuple (b, ¢) from S becomes (b, ¢, S).

We sort the merged list of tuples on the first, or b, component. Now, all the
tuples of both relations that join because of a common B value are consecutive in
the ordering, although tuples from the two relations may be mixed.® We visit the
tuples with each given B value in turn, by going down the sorted list. When we
come to the tuples with B value b, we can pair all the tuples from R with those
from S. Since these tuples all have the same B value, they all join, and the time
taken to produce the tuples of the joined relation is proportional to the number of
tuples produced, except in the case that there are no tuples from R or no tuples
from S. In the latter case, we must still take time proportional to the number of
tuples with B value b, just to examine each once and skip over them on the sorted
list.

Example 8.16. Suppose we want to join the relation CDH from Fig. 8.2(c) with
the relation CR from Fig. 8.2(d). Here, Course plays the role of attribute B, Day
and Hour together play the role of A, and Room is C. The six tuples from CDH and
the three from CR are first padded with the name of the relation. No reordering
of components is necessary, because Course is first in both relations. When we
compare tuples, we first compare the Course components, using lexicographic order
to determine which course name comes first in the order. If there is a tie, that is,
if the course names are the same, we compare the last components, where we take
CDH to precede C'R. If there is still a tie, we can allow either tuple to precede the
other.

Then one sorted order of the tuples will be as shown in Fig. 8.17. Note that
this list is not a relation, because it has tuples of varying lengths. However, it does
group the tuples for CS101 and the tuples for EE200, so that we can easily take the

5 We could arrange while sorting that the last component — that is, the relation name —
be taken into account, so that a tuple with a given B value from relation R is deemed to
precede a tuple with the same B value from S. Then, the tuples with a common B value
would appear with the tuples from R first, and then the tuples from S.



SEC. 8.8 IMPLEMENTING RELATIONAL ALGEBRA OPERATIONS 439

CcSs101 M 9AM CDH
Ccs101 W 9AM CDH
CSs101  F 9AM CDH
CS101  Turing Aud. CR

EE200 Tu 10AM CDH
EE200 W 1PM CDH
EE200 F 10AM CDH

EE200 25 Ohm Hall CR
PH100 Newton Lab. CR

Fig. 8.17. Sorted list of tuples from CDH and CR.

join of these groups of tuples. [

Comparison of Join Methods

Suppose we join the relation R, with scheme {A, B}, and the relation S, with
scheme {B,C}, and let R and S have r tuples and s tuples, respectively. Also, let
the number of tuples in the join be m. Remember that m could be as large as rs,
if each tuple of R joins with each tuple of S (because they all have the same B
value), but m could also be as small as 0, if no tuple of R has a B value in common
with any tuple of S. Finally, let us assume that we can look up any value in any
index in O(1) time, on the average, as we could if the index were a hash table with
a sufficiently large number of buckets.

Every method for joining will take at least O(m) time, just to produce the
output. However, some methods will take more. If we use nested-loop join, it takes
time rs to perform the comparisons. Since m < rs, we can neglect the time to
produce the output and say that the cost of pairing all tuples is O(rs).

On the other hand, we could sort the relations. If we use an algorithm like
merge sort to sort the combined list of r 4+ s tuples, the time required is

O((r + s)log(r + s))

Building the output tuples from adjacent tuples in the sorted list will take O(r + s)
time to examine the list, plus O(m) time to produce the output. The time to sort
dominates the O(r + s) term, but the O(m) cost to produce the output can be
greater or less than the sorting time. Thus we must include both terms in the
running time of the algorithm that joins by sorting; this running time is thus

O(m+ (r + s)log(r + s))

Since m is never greater than rs, and (r + s)log(r + s) is greater than rs only in
some unusual cases (for example, when r or s is 0), we conclude that sort-join is
generally faster than nested-loop join.

Now suppose we have an index on B in the relation S. It takes O(r) time to
look at each tuple of R and look up its B value in the index. To this time we must
add the O(m) cost of retrieving the matching tuples for the various B values and
of producing the output tuples. Since m can be greater than or less than r, the
expression for the cost of this index-join is O(m + r). Similarly, if there is an index
on B for relation R, we can perform the index-join in O(m + s) time. Since both
r and s are smaller than (r + s)log(r + s), except in some unusual situations such



0
00 8.9

440 THE RELATIONAL DATA MODEL

as r + s < 1, the running time of index-join is smaller than that of sort-join. Of
course, we need an index on one of the attributes involved in the join, if we are to
do an index-join, while a sort-join can be done on any relations.

EXERCISES

8.8.1: Suppose that the Studentld-Name-Address-Phone relation (SNAP) of Fig.
8.2(a) is stored with a primary index on StudentId (the key) and a secondary
index on Phone. How would you compute most efficiently the answer to the query
oc(SNAP) if C were

a) Studentld = 12345 AND Address # “45 Kumquat Blvd”?
b) Name = “C. Brown” AND Phone = 555-13577
¢) Name = “C. Brown” OR Phone = 555-13577

8.8.2: Show how to sort-join the relations C'SG from Fig. 8.1 and SNAP from Fig.
8.2(a) by sorting the merged list of tuples as in Example 8.16. Assume the natural
join, or equality on the Studentld components, is wanted. Show the result of the
sort, analogous to Fig. 8.17, and give the tuples in the result of the join.

8.8.3*: Suppose that we join relations R and S, each with n tuples, and the result
has O(n%/?) tuples. Write formulas for the big-oh running time, as a function of n,
for the following techniques for taking the join:

a) Nested-loop join

b) Sort-join

¢) Index-join, using an index on the join attribute of R
d) Index-join, using an index on the join attribute of S

8.8.4*: We proposed taking the union of two relations by using an index on an
attribute A that was a key for one of the relations. Is the method a reasonable way
to take a union if the attribute A that has an index is not a key?

8.8.5%: Suppose we want to compute (a) R NS (b) R — S using an index on
attribute A for one of R and S. Can we obtain running time close to the sum of
the sizes of the two relations?

8.8.6: If we project a relation R onto a set of attributes that contains a key for R,
do we need to eliminate duplicates? Why?

Algebraic Laws for Relations

As with other algebras, by transforming expressions we often have the opportunity
to “optimize” expressions. That is, we can take an expression that is expensive to
evaluate and turn it into an equivalent expression whose evaluation has a lower cost.
While transformations to arithmetic or logical expressions sometimes save a few
operations, the right transformations applied to expressions of relational algebra can
save orders of magnitude in the time it takes to evaluate the expression. Because of
the tremendous difference between the running times of optimized and unoptimized
relational algebra expressions, our ability to optimize such expressions is essential
if programmers are going to program in very high-level languages, like the language
SQL that we mentioned in Section 8.7.



Commutativity
of join

Nonassociativity
of join

SEC. 8.9 ALGEBRAIC LAWS FOR RELATIONS 441

Laws Involving Union, Intersection, and Difference

Section 7.3 covered the principal algebraic laws for union, intersection, and differ-
ence of sets. They apply to relations as a special case, although the reader should
bear in mind the requirement of the relational model that the schemes of the rela-
tions involved in these operations be the same.

Laws Involving Join

In one sense, the join operator is commutative, and in another sense it is not.
Suppose we take the natural join R <1 S, where R has attributes A and B while
S has attributes B and C. Then the columns of the scheme for R <1 S are A,
B, and C, in that order. If we take S <t R instead, we get essentially the same
tuples, but the order of the columns is B, C, and then A. Thus if we insist that
order of columns matters, join is not commutative. However, if we accept that a
relation, with its columns permuted along with their column names, is really the
same relation, then we can consider the join commutative; that point of view will
be adopted here.

The join operator does not always obey the associative law. For example, sup-
pose relations R, S, and T have schemes {A, B}, {B,C}, and {A, D}, respectively.
Suppose we take the natural join (R b1 .S) < T', where we first equate the B com-
ponents of R and S and then equate the A component of the result with the A
component of relation T'. If we associate from the right instead of the left, we get
R < (S < T). Relations S and T have schemes {B,C} and {A, D}, respectively.
There is no pair of attributes we can choose to equate that will achieve the same
effect as the natural join.

However, there are some conditions under which the associative law holds for
1. We leave it as an exercise for the reader to show that

(R A[>:<]B S) CD:]D T)=(R A[>:<]B (s C[>:<]D 7))

whenever A is an attribute of R, B and C' are different attributes of S, and D is an
attribute of 7.

Laws Involving Selection

The most useful laws of relational algebra involve the selection operator. If the
selection condition requires that a specified component have a certain value, as is
often the case in practice, then the relation that is the result of the selection will
tend to have many fewer tuples than the relation to which the selection is applied.
Since operations in general take less time if they are applied to smaller relations,
it is extremely advantageous to apply a selection as soon as we can. In algebraic
terms, we apply selections early by using a law that lets a selection pass down the
expression tree, below other operators.
An example of such a law is

(Uc(R > S)) = (Jc(R) > S)

which holds provided that all attributes mentioned in condition C' are attributes of
relation R. Similarly, if all attributes mentioned by C are attributes of S, we can
push the selection down to .S, using the law

(cc(R=S)) = (R<oc(S5))



Pushing
selections

Selection
splitting

Commutativity
of selection

442 THE RELATIONAL DATA MODEL

Either law is referred to as selection pushing.

When we have a complex condition in a selection, sometimes we can push part
of it one way and part of it the other way, through a join. In order to split a
selection into two or more parts, we need the law

oc mp p(R) = UC(UD(R))

Notice that we can only split a condition into two parts — C and D here — if the
parts are connected by AND. Intuitively, when we select for the AND of two conditions
C and D, we can either examine each tuple of the relation R and see whether the
tuple satisfies both C' and D, or we can examine all the tuples of R, selecting those
that satisfy D, and then examine the tuples that satisfy D to see which of them
satisfy C. We call this law selection splitting.

Another necessary law is the commutativity of selections. If we apply two
selections to a relation, it does not matter in what order we apply the selections;
the selected tuples will still be the same. Formally, we may write

oc(op(R)) =op(oc(R))

for any conditions C and D.

Example 8.17. Let us take up the complex query that we first considered
in Section 8.6: “Where is C. Brown 9 AM on Mondays?” This query involves
navigating over the four relations

1. CSG (Course-StudentId-Grade),

2. SNAP (StudentId-Name-Address-Phone),
3. CDH (Course-Day-Hour), and

4. CR (Course-Room).

To get an algebraic expression for the query, we can start by taking the natural
join of all four relations. That is, we connect C'SG and SNAP by equating the
Studentld components. Think of this operation as extending each

Course-Studentld-Grade

tuple by adding components for the name, address, and phone of the student men-
tioned in the tuple. Of course, we wouldn’t want to store data this way, because it
forces us to repeat the information about each student once for each course the stu-
dent takes. However, we are not storing this data, but just designing an expression
to compute it.

To the result of CSG <t SNAP we join CDH, by equating on the Course
components. That join has the effect of taking each C'SG tuple (already extended
by the student information), making one copy for each meeting of the course, and
extending each tuple by one of the possible Day and Hour values. Finally, we join
the result of (CSG < SNAP) b« CDH with the CR relation, equating Course
components, which has the effect of extending each tuple by adding a component
with the room in which the course meets. The resulting relation has scheme

{Course, Studentld, Grade, Name, Address, Phone, Day, Hour, Room}
and the meaning of a tuple (¢, s, g,n,a,p,d, h,r) is that



SEC. 8.9 ALGEBRAIC LAWS FOR RELATIONS 443

Student s took course ¢ and got grade g.

2. The name of the student with ID number s is n, his or her address is a, and
phone is p.

3. The course ¢ meets in room 7, and one meeting of the course is on day d at
hour h.

To this set of tuples, we must apply the selection that restricts our consideration
to the relevant tuples, namely, those in which the Name component is “C. Brown,”
the Day component is “M,” and the Hour component is “9AM.” There will be at
most one such tuple, on the assumption that C. Brown is taking at most one course
meeting at 9AM on Mondays. Since the answer we want is the Room component of
this tuple, we finish our expression by projecting onto Room. The expression tree
for our query is shown in Fig. 8.18. It consists of the four-way join, followed by the
selection, and then the projection.

TTRoom

OName=“C.Brown” AND Day=“M” AND Hour=“9AM”

M/N\CR
D<1/ \CDH
/N

csaG SNAP

Fig. 8.18. Initial expression to determine where C. Brown is at 9AM, Mondays.

If we were to evaluate the expression of Fig. 8.18 as written, we would construct
an enormous relation by joining C'SG, SNAP, CDH, and CR, and then restrict
it to a single tuple and project that tuple to a single component. Remember from
Section 8.6 that it is not necessary to build such a big relation; we can “push the
selection down the tree” to restrict the relations involved in the join, thus limiting
greatly the sizes of the relations we do construct.

Our first step is shown in Fig. 8.19(a). Notice that the selection involves only
attributes Name, Day, and Hour. None of these come from the right operand of the
top join in Fig. 8.18; they all come from the left side, which is the join of C'SG,
SNAP, and CDH. Thus we may push the selection below the top join and have it
apply to the left operand only, as we see in Fig. 8.19(a).

Now we cannot push the selection further, because one of the attributes in-
volved, Name, comes from the left operand of the middle join in Fig. 8.19(a), while
the other attributes, Day and Hour, come from the right operand, the relation
CDH. Thus we must split the condition in the selection, which is the AND of three



Projection
pushing

444 THE RELATIONAL DATA MODEL

conditions. We could split into three selections, but in this example it suffices to
split the condition Name = “C. Brown” off from the other two. The result of the
split is shown in Fig. 8.19(b).

Now, the selection involving Day and Hour can be pushed down to the right
operand of the middle join, since the right operand, the relation CDH, has both
attributes Day and Hour. Then the other selection, involving Name, can be pushed
to the left operand of the middle join, since that operand, C'SG < SNAP, has Name
as an attribute. These two changes yield the expression tree shown in Fig. 8.19(c).

Finally, the selection on Name involves an attribute of SNAP, and so we can
push this selection to the right operand of the bottom join. This change is shown
in Fig. 8.19(d).

Now we have an expression that gives us almost the same plan as we developed
in Section 8.6 for this query. We begin at the bottom of the expression in Fig.
8.19(d) by finding the student ID(s) for the student(s) named “C. Brown.” By
joining the tuples of SNAP that have Name = “C. Brown” with the C'SG relation,
we get the courses taken by C. Brown. When we apply the second selection to
relation CDH, we get the courses that meet at 9AM on Mondays. The middle join
in Fig. 8.19(d) thus gives us tuples with a course that both is taken by C. Brown
and meets at 9AM Mondays. The top join gets the rooms in which those courses
meet, and the projection gives us these rooms as answer.

The major difference between this plan and the plan of Section 8.6 is that the
latter projects away useless components of tuples, while the plan here carries them
along until the end. Thus to complete our optimization of expressions of relational
algebra, we need laws that push projections down the tree. These laws are not all
the same as the laws for selection, as we shall see in the next subsection. [

Laws Involving Projection

First, whereas selections can be pushed below a union, an intersection, or a set
difference (provided that we push the selection to both operands), projections push
below unions only. That is, the law

(rL(RUS)) = (7(R) UmL(S))
holds. However, it is not true that 77, (R N S) is necessarily the same as
7w (R) Nwp(S)

For example, suppose that R and S are relations with scheme {4, B}, R contains
only the tuple (a,b), and S contains only the tuple (a,c). Then m4(R) N w4 (S)
contains the (one-component) tuple (a), while m4(R N S) does not (because R N S
is empty). Thus we have a situation in which

(ra(RNS)) # (ma(R) N7a(S))

It is possible to push a projection below a join. In general, we need a projection
operator for each operand of the join. If we have an expression 77, (R AD:QB S), then
the attributes of R that we need are those appearing in the list of attributes L,
and the attribute A, which is the attribute from R upon which the join is based.
Similarly, from S we need those attributes that are on the list L, and we also need
the join attribute B, regardless of whether it is or is not on L. Formally, the law
for pushing projections below joins is



SEC. 8.9 ALGEBRAIC LAWS FOR RELATIONS 445

TRoom TRoom
X X
/ CR / \
OName=“C.Brown” AND Day=“M” AND Hour=“9AM” OName=“C.Brown” CR

> ODay=“M” AND Hour=%“9AM”
1 CDH 1
CSG SNAP > CDH

CSG SNAP

(a) Push the selection

below the top join. (b) Split the selection.

TRoom TRoom

N

X X
> CR > CR
OName=“C.Brown” OJDay=“M” AND Hour=“9AM” ODay=“M” AND Hour=%“9AM”

| | /N\ |

> CDH CSG OName=“C.Brown” CDH
CSG SNAP SNAP
(c¢) Push the two selections (d) Push the selection on Name
in different directions. below the bottom join.

Fig. 8.19. Pushing the selection down.



446 THE RELATIONAL DATA MODEL

(v (R T 9) = (mo(mu(B) T 7 ()

where

1. List M consists of those attributes of L that are in the scheme for R, followed
by attribute A if it is not on L, and

2. List N is the attributes of L that are in the scheme of S, followed by B if that
attribute is not on list L.

Note that the useful way in which to apply this projection pushing law is from
left to right, even though we thereby introduce two additional projections and do
not get rid of any. The reason is that it is usually beneficial to project out what
attributes we can as early as possible, that is, as far down the tree as we can. We
still may have to do the projection onto the list L after the join, in the situation
where the join attribute A is not on the list L (recall that the other join attribute,
B from S, will not appear in the join anyway).

Sometimes, the lists M and/or N consist of all attributes of R or S, respectively.
If so, there is no point in performing the projection, since it has no effect, except
perhaps a pointless permutation of the columns of the relation. Thus we shall use
the following law.

7, (R) =R

provided that list L consists of all the attributes in the scheme for R. Note that
this law takes the point of view that relations are not changed by permutations of
their columns.

There is also a situation in which we do not want to bother projecting. Suppose
we have a subexpression 7y, (R) that is part of a larger expression, and let R be a
single relation (rather than an expression involving one or more occurrences of
operators). Suppose also that above this subexpression in the expression tree is
another projection. To perform the projection on R now requires us to examine the
entire relation, regardless of the existence of indexes. If we instead carry along the
attributes of R not on the list L, until the next opportunity to project out those
attributes, we are frequently able to save a significant amount of time.

For instance, we shall, in the next example, discuss a subexpression

T Course,StudentId (CSG)

which has the effect of getting rid of grades. Since our entire expression, which
is for the query of Example 8.17, eventually focuses on a few tuples of the C'SG
relation, we are much better off projecting out grades later; by so doing, we avoid
ever examining the entire C'SG relation.

Example 8.18. Let us proceed from Fig. 8.19(d) to push projections down.
The projection at the root is first pushed below the top join. The projection list
consists of only Room, and the join attribute on both sides of the join is Course.
Thus on the left we project onto Course alone, since Room is not an attribute of the
expression on the left. The right operand of the join is projected onto both Course
and Room. Since these are all the attributes of the operand C'R, we can omit the
projection. The resulting expression is shown in Fig. 8.20(a).

Now, we can push the projection onto Course below the middle join. Since



SEC. 8.9 ALGEBRAIC LAWS FOR RELATIONS 447

TRoom TRoom

> >
T Course CR > CR

| RN

> T Course T Course
> ODay=“M” AND Hour=“9AM” bel ODay=“M” AND Hour=“9AM”
CSG  oName=“C.Brown” CDH csSG OName="“C.Brown” C DH
SNAP SNAP
(a) Push the projection (b) Push the projection
below the top join. below the middle join.
TRoom TRoom

| |
N/N\CR N/N\C’R
N N

T Course T Course TCourse TCourse

ODay=“M” AND Hour=%“9AM” ODay=“M”" AND Hour=“9AM”

N NG

TCourse,Studentld TStudentld CDH csSaG TStudentld CDH
| | |
csG OName=*“C.Brown” OName=*“C.Brown”
| |
SNAP SNAP
(c) Push the projection (d) Remove the step that projects
below the bottom join. out the grade from CSG.

Fig. 8.20. Pushing the projection down.



448 THE RELATIONAL DATA MODEL

Course is also the join attribute on both sides, we introduce two operators Tcourse
below the middle join. Since the result of the middle join then has only attribute
Course, we no longer need the projection above that join; the new expression is
shown in Fig. 8.20(b). Note that this join, involving two relations whose tuples
have only the one component Course, is effectively an intersection of sets. That
makes sense — it intersects the set of courses C. Brown is taking with the set of
courses that meet at 9AM Mondays.

At this point, we need to push Tcourse below the bottom join. The join attribute
is StudentId on both sides, and so the projection list on the left is (Course, Studen-
tId) and the list on the right is just Studentld (because Course is not an attribute
of the expression on the right). The expression that results is shown in Fig. 8.20(c).

Finally, as we mentioned just before the example, it is advantageous here not
to project Grade out of the C'SG relation immediately. Above that projection we
meet the operator Tcourse, Wwhich will get rid of the grades anyway. If we instead
use the expression of Fig. 8.20(d), we have essentially the plan of Section 8.6 for
this query. That is, the expression Tstudentld (JName:uc,Brownw(SNAP)) gives us
the student ID(s) for students named “C. Brown,” and the first join followed by
projection Tcourse gives us the courses taken by those students. If there is an index
on Name for relation SNAP and there is an index on Studentld for relation C'SG,
then these operations are performed quickly.

The subexpression Tcourse (O'Day:“M” AND Hour=<oaM” (CDH )) has as its value
the courses that meet at 9AM Mondays, and the middle join intersects these sets
to give us the courses taken by a student named “C. Brown” that meet at 9AM
Mondays. Finally, the top join followed by projection looks up these courses in the
CR relation (a fast operation if there is an index on Course), and produces the
associated rooms as answer. [

EXERCISES

8.9.1*: Prove that
(R ATB S) CD:]D T)=(R ATB (s CTD 7))

whenever A is an attribute of R, B and C are different attributes of S, and D is
an attribute of T. Why is it important that B # C?7 Hint: Remember that certain
attributes disappear when a join is taken.

8.9.2*: Prove that
((r asp S) A[fc T)=(R acp (S BD:qC 7))
whenever A is an attribute of R, B is an attribute of S, and C is an attribute of T'.

8.9.3: Take each of your relational algebra queries from Exercise 8.7.3 and push
selections and projections down as far as you can.

8.9.4: Let us make the following gross simplifications regarding the number of
tuples that appear in relations that are the result of the operations of relational
algebra.



0
= 8.10

SEC. 8.10 SUMMARY OF CHAPTER 8 449

1)  Each operand relation has 1000 tuples.

1i) When we join relations with n and m tuples, respectively, the resulting relation
has mn/100 tuples.

141) When we perform a selection whose condition is the AND of &k conditions, each
of which equates an attribute to a constant value, we divide the size of the
relation by 10,

1v) When we perform a projection, the size of the relation does not change.

Further, let us estimate the cost of evaluating an expression by the sum of the
sizes of the relations computed for each interior node. Give the costs of each of the
expressions in Figs. 8.18, 8.19(a) through (d), and 8.20(a) through (d).

8.9.5*: Prove the selection-pushing law
(JC(R > S)) = ((JC(R)) > S)

Hint: To prove the equality of two sets, it is often easiest to show that each is a
subset of the other, as discussed in Section 7.3.

8.9.6*: Prove the laws

a) (oc(RNS)) = (oc(R)Noc(9))

b) (oc(RUS)) = (0c(R)Uoc(S))

¢) (oc(R-15)) = (oc(R) —ac(9))

8.9.7*: Give an example to show that the law
(mL(R = 8)) = (7(R) — 7 (5))

does not hold.

8.9.8**: It is sometimes possible to push a selection down both ways through a
join, using the “equivalence”

oc(Ra S) = (00(R) =1 0(S)) (8.1)

a) Under what circumstances is Equation (8.1) truly an equivalence?
b) If (8.1) is valid, when would it be better to use this law, rather than push the
selection down only to R or only to S7

Summary of Chapter 8

You should remember the following points from this chapter.

00 Two-dimensional tables, called relations, are a versatile way to store informa-
tion.

O Rows of a relation are called “tuples,” and the columns are named by “at-
tributes.”

O A “primary index” represents the tuples of a relation as data structures and dis-
tributes them in such a way that operations using values in certain attributes —
the “domain” for the index — are facilitated.



0
= 8.11

450 THE RELATIONAL DATA MODEL

O A “key” for a relation is a set of attributes that uniquely determine values for
the other attributes of the relation. Often, a primary index uses a key for its
domain.

0 “Secondary indexes” are data structures that facilitate operations that specify
a particular attribute, usually one not part of the domain for the primary index.

O Relational algebra is a high-level notation for specifying queries about one
or more relations. Its principal operations are union, intersection, difference,
selection, projection, and join.

0 There are a number of ways to implement joins more efficiently than the obvious
“nested-loop join,” which pairs each tuple of one relation with each tuple of
the other. Index-join and sort-join run in time that is close to what it takes to
look at the two relations involved and produce the result of the join.

0 Optimization of expressions in relational algebra can make significant improve-
ments in the running time for evaluation of expressions and is therefore essential
if languages based on relational algebra are to be used in practice to express
queries.

O A number of ways to improve the running time of a given expression are known.
Pushing down selections is often the most profitable.

Bibliographic Notes for Chapter 8

Further study of database systems, especially those based on the relational model,
can be found in Ullman [1988].

The paper by Codd [1970] is generally regarded as the origin of the relational
data model, although there were a number of earlier works that contained some
of the ideas. The first implementations of systems using this model were INGRES
(Stonebraker et al. [1976]) at Berkeley and System R (Astrahan et al. [1976]) at
IBM. The latter is the origin of the language SQL sampled in Section 8.7 and found
in many database management systems today; see Chamberlin et al. [1976]. The
relational model is also found in the UNIX command awk (Aho, Kernighan, and
Weinberger [1988]).

Aho, A. V., B. W. Kernighan, and P. J. Weinberger [1988]. The AWK programming
Language, Addison-Wesley, Reading, Mass.

Astrahan, M. M., et al. [1976]. “System R: a relational approach to data manage-
ment,” ACM Trans. on Database Systems 1:2, pp. 97-137.

Chamberlin, D. D., et al. [1976]. “SEQUEL 2: a unified approach to data definition,
manipulation, and control,” IBM J. Research and Development 20:6, pp. 560-575.

Codd, E. F. [1970]. “A relational model for large shared data banks,” Comm. ACM
13:6, pp. 377-387.

Stonebraker, M., E. Wong, P. Kreps, and G. Held [1976]. “The design and imple-
mentation of INGRES,” ACM Trans. on Database Systems 1:3, pp. 189-222.

Ullman, J. D. [1988]. Principles of Database and Knowledge-Base Systems (two
volumes) Computer Science Press, New York.



