Virtual Cursors for XML Joins

Beverly Yang*
byang@db.stanford.edu
Stanford University

ABSTRACT

Structural joins are a fundamental operation in XML query pro-
cessing and a large body of work has focused on index-based al-
gorithms for executing them. In this paper, we describe how two
well-known index features — path indices and ancestor informa-
tion — can be combined in a novel way to replace one or more of
the physical index cursors in a structural join with wvirtual cur-
sors. The position of a virtual cursor is derived from the path
and ancestor information of a physical cursor. Implementation
results are provided to show that, by eliminating index I/0, vir-
tual cursors can improve the performance of structural joins by
an order of magnitude or more.

Categories and Subject Descriptors: H.3 [Information
Storage and Retrieval]: Miscellaneous

General Terms: Algorithms, Performance, Experimenta-
tion

Keywords: XML, Join operator, Indexing, Evaluation

1. INTRODUCTION

In recent years, XML has become the standard format for
data exchange across business applications. Its widespread
use has sparked a large amount of research, focused on pro-
viding efficient query processing over large XML reposito-
ries. Processing XML queries has proven to be challenging,
due to the semi-structured nature of the data and the flexible
query capabilities offered by languages such as XQuery [5].

XML queries often include both value and structural con-
straints. For example, the XQuery expression:

//article//section[
//title contains(’Query Processing’) AND
//figure//caption contains(’XML’)]

returns all article sections that are titled “Query Processing”
and have a figure containing the caption “XML”. We can
represent this query with the node-labeled tree shown in
Figure 1. Nodes are labeled with element tags and text

*Work done while author was visiting IBM Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’ 04, November 8-13, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

Marcus Fontoura Eugene Shekita Sridhar Rajagopalan Kevin Beyer
{fontoura,shekita,sridhar,kbeyery@almaden.ibm.com

IBM Almaden

art‘i‘cle
section
t|HtIe figure

[
‘Query Processing’ caption
I

XML

Figure 1: Tree representation of XML query

values. In this query, the structural predicate spans five

elements and multiple text values in a complex twig pattern.

Structural joins are a core operation for any XML query
processor and typically account for the bulk of the query pro-
cessing cost [1]. As a result, a large body work has focused
on efficient algorithms to process binary structural joins [1,
4, 23], and more recently, holistic path/twig joins [3, 14].
These algorithms are all indez-based, relying on an inverted
index for positional information about elements, and cursors
are used to access the inverted index.

In this paper, we describe how two well-known index fea-
tures, namely, path indices and ancestor information, can
be combined in a novel way to replace one more more of
the physical index cursors in a structural join with virtual
cursors. Unlike a physical cursor, the movement of a virtual
cursor never triggers index I/O — its position is derived from
the path and ancestor information of a physical cursor. The
main contributions of this paper are:

o A description of virtual cursors and how they can be easily
incorporated into existing algorithms for structural joins.

e Experimental results showing that, by eliminating index
I/0, virtual cursors can improve the performance of struc-
tural joins by an order of magnitude or more.

e Experimental results showing that the overhead of adding
path indices and ancestor information is easily subsumed
by the advantages of virtual cursors in most scenarios.

Our work has been done in the context of the Trevi intranet

search engine [7]. Trevi is a prototype search engine used

within IBM for all queries on its world-wide intranet.

2. RELATED WORK

The problem of exploiting indices to enhance XML join
algorithms has been studied in [4, 12, 14, 17, 21]. Our contri-
butions in this paper are either shown to outperform existing
approaches, or can be used in conjunction with existing tech-
niques. Reference [21] presents the ViST index structure and
algorithms for twig join processing via subsequence match-
ing. We could not obtain the ViST executable for compar-
ison; however, from the numbers presented in their paper,

our techniques appear to outperform ViST by a factor of 33
in query runtime and 30-40 in build time, though our index
size is roughly 5 times larger.

References [4, 12] use indices over postings lists to speed
up processing of binary structural joins. They use B-trees
to speed up the location of descendants of a given element,
and [12] uses a specialized XR-tree to speed up the location
of ancestors. We will compare the performance of our vir-
tual cursor algorithm with that presented in [12], and show
our algorithm to exhibit much better performance. Also,
the specialized XR-tree index structure only provides par-
tial ancestor information: given an element tag 7' and an
element e, it returns all ancestors of e with the tag 7. This
partial functionality is insufficient for implementing our vir-
tual cursor algorithm; therefore, we must look for new ways
of implementing full ancestor information in the inverted
index, without using specialized structures.

Reference [14] presents an improved holistic twig join al-
gorithm over [3] that exploits indices (such as B-trees). Our
algorithms can be used in conjunction with this twig join
algorithm, and we show our algorithms to greatly speed up
their execution time.

Reference [17] introduced the problem of integrating in-
verted indices and path indices to answer XML joins. Our
work builds upon theirs by combining path indices with an-
cestor information to enable virtual cursors. We show how
virtual cursors can speed up join processing by over an order
of magnitude, when compared to using path indices only.

3. BACKGROUND

XML data is commonly modeled by a tree structure, where

nodes represent elements, attributes and text data, and parent-

child edges represent nesting between elements. Elements
and text values are associated with a position in the docu-
ment. Most existing XML query processing algorithms rely
on begin/end/level positional encoding (or BEL), which rep-
resents each element with a tuple (begin, end, level) based
on its position in the tree. Another less-used alternative
is Dewey encoding (e.g., [11, 20]), defined as follows: If we
assign to each element a value that is the element’s order
among its siblings, then the Dewey location of element e is
the vector of values of all elements on the path from root
to e, inclusive. With both BEL and Dewey encoding, struc-
tural relationships between two elements can be easily de-
termined given their positions [20]. Figure 2 illustrates both
encodings over a sample XML document.

Structural predicates can also be viewed as a tree, where
the label of each “query node” is defined by the element
tag or text value represented by the node. Path queries
(e.g., “//a//b//c”) and binary structural predicates (e.g.,
“a//b”) are degenerate cases of the general twig pattern
of structural predicates. = An XML database is simply a
collection of XML documents. As stated in [3], matching
a structural predicate against an XML database is to find
all distinet occurrences of the tree pattern in the database.
A match for a pattern @ over database D is a mapping
from nodes in @ to nodes in D such that both structural
and value-based predicates are satisfied. The answer to Q,
where @) has n nodes, can be represented as an n-ary relation
where each tuple (d1,ds, ..., d») consists of the database node
IDs that identify a distinct match of Q) in D.

Inverted Indices. Index-based approaches to evaluating
structural queries in XML (e.g., [4, 12, 14]) are based on

an index over the positions of all elements in the database.

By far the most common implementation of this index is an

inverted indez [10], which is frequently used in information

retrieval and XML systems alike (e.g., [1, 3, 4]).

Briefly, an inverted index comnsists of one posting list per
distinct token in the dataset, where a token may represent
a text value or element tag. Each posting list is a sorted list
of postings with format (Pos,Data). There is one posting
per occurrence of the token in the dataset. Pos represents
the position of the element occurrence, and Data holds some
user-defined data, which for now we assume is empty. The
list is sorted by Pos. Stepping through each posting in a list
will provide us with the positions of every element (or text
value) with a given tag in the dataset, in order of appear-
ance. As with most IR systems, we assume each posting list
is indexed, typically with a B-tree, such that searching for
a particular position in the posting list is efficient.

As we observed earlier, each node ¢ in a twig pattern is
associated with an element tag or text value; hence each
node is associated with exactly one posting list in the in-
verted index. To process a structural predicate, we retrieve
and scan one posting list per node. For example, to process
the query shown in Figure 1, we need eight posting lists —
five for each query node representing an element, and three
for query nodes representing text values (the 'Query’ and
"Processing’ text values each have their own posting list).
‘We call the current position of the scan operator the cursor
over the posting list. In particular, we will use C, to denote
the cursor over the posting list of query node q.

Performing a structural join involves moving these cursors
in a coordinated way to meet the ancestor-descendent and
parent-child constraints imposed by the query. Three basic
operations over the cursors are required for the majority of
index-based structural join algorithms [14]:

e advance() — advances the cursor to the next position in
the posting list.

o fwudBeyond (Position p) — advances the cursor to the first
element whose position is greater than or equal to p.

o fwdToAnc(Position p) — advances the cursor to the first
ancestor of p at or following the current cursor position,
and returns TRUE. If no such ancestor exists, it stops at
the first element e that has a greater position than p, and
returns FALSE.

To maintain optimality bounds of existing algorithms, cur-

sors may only move forwards, never backwards. Note that

indices (e.g., a B-tree) are required over posting lists to
efficiently implement fwdBeyond() and fwdToAnc(); again,
such indices over the posting lists are common.

Path Index. A path indez is a structural summary of the
XML dataset (e.g., [9, 15]). In its simplest conceptual form,
a path index is a list of (path, pathID) entries, where there
exists one entry per unique path in the dataset. Each path
is assigned a unique path ID (or PID). Figure 3 shows the
path index for the dataset modeled in Figure 2.

We say a PID qualifies for a given pattern if the asso-
ciated path matches this pattern. Over the path index,
we define the function GetQualifyingIDs:path pattern —
{PID}, which maps a path pattern to the set of qualifying
PIDs. For example, over the path index in Figure 3, a call
to GetQualifyingIDs(“//R//B”) will return the set {3,6,7}.
The actual implementation of GetQualifyingIDs() is fairly
straightforward and is covered nicely in [17]; we do not dis-
cuss it further in this paper.

(0,12,0)

R,
Path Path ID
(1,6,1) B (7.8.1) (9,12,1) root
N B /A\;(l.s) R-A 2
(2,14,2) B.(62 (11,12,2) R-A-B 3 A, A,
(1.1.1) Py 2(1.1.2) Y Bs *6 1.3.2) R-A-B-A 4 - A A A
(4,6,3) ((1’_2’_1; (1(%015) C (2123 R-A-B-A-C | 5 L R Doy Ay
112D A, 3(13.2.1) R-A-B-A-B | 6 B, B,
VLA NN R-B 7 - -
1211y C, B 1212 R-B-C 8
R-A-B-C 9
Figure 2: Tree representation of a sample . Figure 4: Dataset for Example 1.
R s Figure 3: Conceptual . .
XML document, along with position en- A) Horizontal lines represent element
. . . path index for dataset in ops . .
coding of each element. BEL encoding is Fig 2 positions. Nesting is represented
igure

shown in italics, Dewey encoding is shown
in bold font.

Given a path index, every position in the inverted index
is now associated with a PID. Again, we refer readers to [17]
for a discussion on how to integrate PIDs into the inverted
index and use them during query processing. In brief, every
posting in the index contains the PID of the corresponding
element. Cursors are modified to ignore all postings with
non-qualifying PIDs, so that the actual number of postings
handled by the join algorithm is greatly decreased. Integra-
tion of PIDs into the index incurs an overhead on index size
and build time, which we will address in Section 6.3.

Ancestor Information. With ancestor information, we
can efficiently obtain the ancestors of any given element.
There are many possible approaches to augmenting the in-
dex with ancestor information. One elegant approach is to
use Dewey position encoding, rather than the popular BEL
encoding. As illustrated in Figure 2, the Dewey positions
of all ancestors of an element are encoded in the prefixes of
that element’s position. In contrast, although BEL encod-
ing allows us to easily determine whether a given element is
an ancestor of another given element, it does not allow us to
immediately produce the positions of all ancestors given a
single element. We note that other encodings such as [2] also
provide ancestor information; in this paper, we use Dewey
encoding for its relative simplicity and popularity compared
to these other approaches.

4. VIRTUAL CURSORS

In this section, we present the wirtual cursor algorithms,
an implementation of the cursor interface that allow us to
avoid scanning postings for all “internal” (non-leaf) posting
lists. As we will see, the key to virtual cursors is exploit-
ing the complementary strengths of both path indices and
ancestor information.

4.1 Algorithm

We begin by making the following observation of the ex-
isting structural join algorithms in the literature:

OBSERVATION 1. Every “useful” element position of cur-
sor Cq, where q is any non-leaf (or internal) query node, is
the ancestor of some cursor Ci, where l is a leaf node.

A “useful” element is one that is either used in a solution,
or that was necessary to inspect in order to correctly process
the join. The intuition for the above observation can be
explained as follows: from a given dataset, say we removed
all elements with label @ that had no descendants with label
L. Any query in which L appears as a descendant of @

by containment of lines

should return the same result set in the modified dataset
as in the unmodified dataset. We can thus conclude that
any algorithm running over the unmodified dataset does not
need to inspect any @ elements lacking L descendants, in
order to return the correct result set.

Given the above observation, it follows that if we can de-
termine all ancestor positions of a given element by inspect-
ing only that element, then to process the algorithms, we
do not need to scan the posting lists for any internal query
node. For example, in the query shown in Figure 1, we do
not need to touch the posting lists for any of the query nodes
representing elements. This insight provides the basis for the
virtual cursor — an implementation of the index operations
that does not scan physical postings. These algorithms can
be used in conjunction with existing join algorithms (e.g., [4,
14]), with minor modifications (Section 4.2).

Preliminaries. To provide full functionality for a virtual
cursor, we need to implement the three operators described
earlier: fwdBeyond(), fwdToAnc(), and advance(). How-
ever, virtual cursors are only applicable to internal (non-
leaf) query nodes, and structural join algorithms can be
easily modified to never call fwdBeyond() on an internal
query cursor; thus, we need only to consider fwdToAnc () and
advance (). We will call our algorithms for these functions
VirtualFwdToAnc() and VirtualAdvance(), respectively.

To implement virtual cursors, we need two important help-
er functions, GetAncestors: element — {element}, and
GetLevels: (PID,token) — {level}. Function GetAnces-
tors() takes as input an element position from the dataset,
and returns all ancestor positions of the element. For ex-
ample, over the dataset in Figure 2, element C: has ances-
tors {R, A1, B2, A2}. Thus, using Dewey encoding, calling
GetAncestors(1.1.2.1.1) returns {1, 1.1, 1.1.2, 1.1.2.1}. It
is easy to see how the values in the return set are simply all
the prefixes of the original position, when Dewey encoding
is used.

Although we now have the positions of all ancestors of a
given element, we still need to know which of these positions
are relevant to a cursor. For example, to implement a cur-
sor associated with token “A” only A elements are relevant.
Function GetLevels() addresses this need by returning the
levels, or depths, of the ancestors that match a given to-
ken. For example, using the sample path index in Figure 3,
GetLevels(5, “A”) returns {2,4}. Since element 1.1.2.1.1
from Figure 2 has PID 5, we know that ancestors {1.1} and
{1.1.2.1} have tag A. Function GetLevels(pid, token) can
be efficiently implemented over the path index in time O(d),

Algorithm 1 VirtualFwdToAnc(p)
Input: Element position p of descendant cursor
Cursor C on which function is called (implicit)
Output: First ancestor p, of p in the posting list such
that p, is greater than or equal to the current
cursor position, if such an element exists
1: C.pdesc = p;
2: AncArray = GetAncestors(p);
3: Level Array = GetLevels(p.PID, C.token);
4: for i=1:length(AncArray) do
if AncArray[i] < C.peyr then
continue;
if ¢ ¢ Level Array then
continue;
C.peur = AncArrayl[il;
10: return C.pcyr;
11: end for
12: C.pcur = invalidPosition;
13: return C.pcur;

Function VirtualAdvance()

Input: Cursor C on which function is called (implicit)
Output: Next useful element in this posting list

1: return VirtualFwdToAnc(C.pgesc);

where d is the length of the path represented by ID pid. We
also note that at a system-wide level, GetLevels() needs
to be performed just once for a given PID and token; the
results can then be saved (e.g., in a hash table) and reused
for future queries.

Finally, we associate state with a given cursor C. Each
cursor C is associated with a token (e.g., the element tag
“A”), an element position pc,, that represents the current
position of the cursor, and an element position pgesc that
represents the last position passed in to the call Virtual-
FwdToAnc (). The definition of these variables become clear
when we present our algorithms.

Virtual Cursor. The algorithm for VirtualFwdToAnc ()
works as follows: First, given an element position p of a child
query node, we retrieve the ancestor positions of p (line 2)
and the levels at which the relevant ancestors appear (line
3). We then find the first ancestor position p, for which
the following conditions hold: (1) ps > peur, Where peyr is
the current element position of this cursor, and (2) p, is
“relevant” to the cursor, meaning p, has the appropriate
tag or text value.

The first condition (enforced by lines 5-6) is necessary
given our requirement that cursors never move backwards;
otherwise, we may lose optimality properties of the join al-
gorithms. The second condition (enforced in lines 7-8) holds
iff the depth of p,, determined by its index into AncArray,
appears in the array Level Array of relevant levels. If such
an element position p, is found in AncArray, then we know
it is a relevant, useful ancestor of p that the calling join al-
gorithm has not yet seen. Hence, peyr is set to p,. Upon
returning from the call, the cursor is defined to be pointing
t0 peur. Note also that at line 1, we set pgesc = p, which
will be used in VirtualAdvance() described below.

ExXAMPLE 1. Consider the dataset in Figure 4, and the
call Co —VirtualFwdTodnc(B;1). Before VirtualFwdToAnc
is called for the first time in o query, Pcur s initialized to a
special position POS_ZERQ, which is defined to be less than
all other positions in the database.

When the function is called, GetAncestors(Bi) will re-
turn the set {Root,Ay ,Ago}. Say Bi has path ID x, repre-

senting the path pattern “Root-A-A-B”. In this case, Get-
Levels(z,“A”) will return the set {2,3}, since only the an-
cestors at depths 2 and 3 have label A. When i = 1 (An-
cArrayfi] = Root) the first condition holds (Root > pcur)
but the second condition does not (i ¢ Level Array). When
i = 2, both conditions hold. Thus, pcur is set to Ay, the
correct first ancestor of element Bi.

Now let us consider the VirtualAdvance() algorithm, which
is simply an invocation of VirtualFwdToAnc(pgesc). Intu-
itively, this algorithm results in incorrect behavior. For ex-
ample, say after the first call to C4 — VirtualFwdToAnc(B;),
we call C4 — VirtualAdvance (). The definition of advance ()
requires that we return element A;, but VirtualAdvance ()
will return Agg. However, this is where Observation 1 be-
comes important: because element A; is not useful, any
structural or holistic join algorithm does not need to know
of its existence. Returning Agg, the first useful element fol-
lowing Ay, will result in correct join behavior. We therefore
modify the definition of advance() to return the next useful
position following the current cursor position.

What happens in VirtualFwdToAnc () if no ancestor exists
for an element position p? In order to maintain correctness,
the cursor must point to a position p’ such that: (1) p’ > p,
and (2) p’ < =z for all real elements = such that = > p.
However, since VirtualFwdToAnc() only has knowledge of
elements that are ancestors of p, and p’ is necessarily not an
ancestor of p, we must define an “imaginary” invalid position
that is defined to satsify these properties (line 12).

For example, say we call C4 —VirtualAdvance() af-
ter the previous call to VirtualFwdToAnc(B;) returnes Agg.
This call should return A1oo, which is a useful element. How-
ever, since A1go is not an ancestor of By, VirtualFwdToAnc ()
does not know of the existence of Aigo, until the function
is called with B> as input. Instead, using Dewey notation,
since the position of Bj is 2.99.1, we set pcyr to the invalid
position 2.99.1.%. This position is invalid because % is not
a valid Dewey component (by definition, all components in
a Dewey expression are integers). However, it satisfies the
constraints that it is larger than B;, and yet smaller than
all valid elements that follow Bi. Thus, it maintains the
correctness of the join algorithms calling it.

We note that the above algorithms are shown in the most
conceptually clear way, but an actual implementation can
be optimized [6].

4.2 Modification to Holistic Join

To incorporate virtual cursors into the latest holistic join
algorithms [13, 14], we must make a simple modification
to the LocateExtension subroutine defined in these algo-
rithms. We refer readers to the citations for more details on
how this subroutine fits in with the overall join algorithm.
However, all necessary details to understand this subroutine
are contained in this section.

The subroutine LocateExtension(q) finds the first solu-
tion, or “extension,” to the subquery rooted at g, in the doc-
ument following the current cursor positions. For example,
consider the query “//a//b//c” over the dataset shown in
Figure 2. Say the current cursor positions are (Asz, B2, C1).
A call to LocateExtension(B) will forward Cp to By and
Cc to Cb, since these elements represent the first solution
to the subquery “//b//c” following the current cursor posi-
tions. A call to LocateExtension(A) will forward C4 to As,
Cp to Bg and C¢ to (3, since these elements represent the

Algorithm 2 LocateExtension(q)

1: while (not end(gq)) and (not hasExtension(g)) do
2: (p,c) = PickBrokenEdge(q);

3: ZigZagJoin(p,c);

4: end while

Function hasExtension(q)

1: for each edge (p,c) in the sub query tree ¢ do
2: if isBroken(p,c) then

3: return FALSE;

4: end for

5: return TRUE;

Procedure ZigZagJoin(p,c)

1: while (not end(Cp)) and (not end(C.))
and (not contains(Cp,C.)) do

2 if Cp < C¢ then

3: Cp — fwdToAncestor0f(C.);

4: else

5 C. — fudBeyond(Cj);

6: end while

Procedure end(q)
1: return Vq € subtreeNodes(q) : isLeaf(q;) = end(Cq;));

first solution to the subquery “//a//b//c” following current
cursor positions.

The original algorithm for LocateExtension is shown in
Algorithm 2. LocateExtension works by repeatedly select-
ing and fixing “broken” edges, until no edges are broken,
which by definition means we have found an extension. An
edge {q1,q2} is broken if C¢, does not contain Cy, — that is,
not contains(Cy,, Cy,). Different strategies may be used
to select a broken edge; this problem is studied in [14].
To fix a broken edge, LocateExtension performs a “zig-zag
join,” commonly used to join inverted lists in information
retrieval [8]. As we can see, if PickBrokenEdge selects an
edge such that c is an internal node, then ZigZagJoin may
call fwdBeyond on the cursor for an internal node.

To modify LocateExtension so that it does not call fwd-
Beyond on an internal cursor, we observe that for an element
corresponding to some query node g to appear in a solution,
it must be contained by elements corresponding to all an-
cestors of g, in the proper order. For example, in query
//a//b//c, for some C element to appear in a solution, it
must have a B ancestor, which must in turn have an A an-
cestor.

Given this observation, our modifications to LocateExten-
sion can be seen in Algorithm 3. First, instead of PickBro-
kenEdge, we substitute the function PickBrokenLeaf, which
returns a leaf node ! that does not have an unbroken path
from ¢ to leaf. We then find the maximum ancestor cur-
sor C,, and call C; —fwdBeyond(C,). Note that calling
fwdBeyond on any of the ancestor cursors would be correct,
but not as efficient. Finally, we “fix” the path from ¢ to
leaf by forwarding all ancestor cursors to positions that are
ancestors of the current leaf node position. Because cur-
sors only return positions with qualifying path IDs, we are
guaranteed that such ancestors exist.

Although we cannot prove that our new LocateExtension
is strictly more efficient than the original LocateExtension
(or vice versa), in practice we find that the new LocateExten-
sion is more efficient. The intuition behind this observation
is that elements with qualifying path IDs are guaranteed to
have all the necessary ancestors, but not all the necessary de-
scendants. For example, consider again query “//a//b//c”

Algorithm 3 LocateExtension(gq) (with virtual cursors)
1: while (not end(g)) and (not hasExtension(g)) do
2: | = PickBrokenLeaf(q);

3: A = ancestors of [under subquery rooted at g¢;

4 Qmaz — mazargaeA{Ca}E

5: C; —fwdBeyond(Ca,, .,);

6: for eachain A
7

8:

Co —VirtualFwdToAnc(Cy);
end while

over the dataset in Figure 2. Say the cursors are currently
pointing to elements (A, B3, C1). Fixing edge (a,b) will
leave the cursors pointing to elements Az and Bs, because
both of these elements have qualifying path IDs. However,
element Bs does not have a C' descendant. In contrast, fix-
ing leaf ¢ will automatically forward the cursors to the next
solution, (As, Bs,C3), since Cy does not have a qualifying
PID and will therefore be skipped over.

4.3 Analytical Evaluation

With regards to performance, virtual cursors provide two
main advantages. First, and most importantly, they allow
us to avoid reading any postings from disk for all internal
query nodes. Second, we can show the following result:

LEMMA 1. Ezcluding invalid positions, the number of val-
ues returned using a virtual cursor for any query node q is
less than or equal to the number of values returned using a
physical cursor.

The corollary to this lemma is that the number of instruc-
tions executed by the join algorithm, excluding the process-
ing of invalid positions, is maintained or improved by the
use of virtual cursors. We refer readers to [6] for a proof of
this lemma.

5. EXPERIMENTAL SETUP

Given the path index and ancestor information features,
we now have a space of indexing alternatives to compare.
The points in this space are as follows:

e Basic — The standard inverted index with B-tree indices
over the posting lists, using BEL encoding

e Path — A Basic index integrated with PIDs

e Anc - A Basic index using Dewey encoding

e PathAnc — A Basic index using Dewey encoding, and
integrated with PIDs

e VC - A PathAnc index, over which we use virtual cursors

Under the Anc and PathAnc indexing alternatives, we use a

modified algorithm of FindAncestors found in [12] to ef-

ficiently implement fwdToAnc using ancestor information.

Note that PathAnc and VC represent the same physical in-

dex features, but different algorithms. An intuition of how

the different index features affect query execution will be

provided in Section 6.1.

We evaluate each indexing alternative primarily through
running time, and when appropriate, number of elements
scanned, indez size and indez build time. Running time is
obtained for a given query by averaging the running time
of several consecutive runs with cold buffers. Cold buffers
ensure that we capture the I/O cost of processing the query
in the running time. The number of element scans is the
number of postings that are scanned in the posting lists.
Build time is the time to construct a new inverted index
from a tokenized input.

departments .
7 Tag Size
degirtmtilf {A,B,C,D} |11 M
name employee@ g 11000}I<{
name+ email G 1K
Figure 5: DTD for syn- Figure 6: Posting list
thetic data sizes
Join Result Size
{A,B,C,D} — {A,B,C,D} 500K
{A,B,C,D} - E 50K
{A,B,C,D} - F 5K
{4,B,C,D} —» G 500
E — {A,B,C,D} 50K
F — {A,B,C,D} 5K
G - {A,B,C,D} 500

Table 1: Join result sizes between element sets

Our queries fall into three categories: Simple binary struc-
tural joins (using the algorithm in [4]), holistic path queries,
and holistic twig queries (using the algorithm in [14]). Bi-
nary structural joins are most widely used in current XML
database systems [1], while holistic path and twig joins have
provably superior performance and are likely to become pop-
ular in the near future.

Testbed. Our experimental testbed is built over the
Berkeley DB [19] embedded database. Because compres-
sion and packing alternatives differ widely for Dewey and
BEL encodings, to remain agnostic to these choices, our ex-
periments comparing these two encodings do not compress
or pack the data. Later in Section 6.3 we will explain this
choice as worst case scenario for our virtual cursor tech-
nique. All experiments are run on a Linux Red Hat 8.0
workstation with a 2.2 GHz Intel Pentium 4 processor and
2 GB main memory. Note that while memory is large, all
algorithms access posting lists in strictly sequential order.
Therefore, our runtimes are representative of any memory
buffer large enough to hold at least the internal pages of the
B-tree and one leaf page per posting list.

Datasets. For index size and build experiments, we use
the XMark [22] benchmark dataset. For query evaluation,
we choose to generate our own data in order to control the
structure and join characteristics of the data. However, ex-
periments were conducted over real-world and benchmark
datasets (e.g., XMark) and we observed similar performance
behavior, at the same relative orders of magnitude.

To evaluate binary structural joins, we use the same data-
set used in [4, 12], generated according to the DTD in Fig-
ure 5, with roughly 1 million name and 1 million employee
elements. For holistic path and twig joins, we needed more
complex document structure to study different aspects of
join performance. For these, we use a dataset modeled after
the one used in [14] to evaluate holistic twig join perfor-
mance. In particular, our dataset consists of 7 element tags,
whose posting list sizes are shown in Figure 6. We vary the
sizes of the join result (i.e., inverse selectivity) between ele-
ments as shown in Table 1. By selecting queries with varying
patterns, join selectivity and element set frequency, we can
study the performance of our algorithms with different query
and data properties.

Emp >

Name >—" = x
Basic

Emp X e
Name >=—"" — ——="
Path

Emp 2~ T >
Name o= = T X
Anc
Emp >——""_"_—" ————="
Name >»o—" = ——=_"
PathAnc

Name >— — —=" VC

Figure 10: Access pattern over employee and name post-
ing lists

6. RESULTS

In this section, we demonstrate the effectiveness of virtual
cursors over our prototype implementation. We also analyze
the overhead of the index features that enable virtual cur-
SOrS.

6.1 Binary Structural Joins

We begin by analyzing the simplest of all join types: bi-
nary structural joins. Figure 7 shows the performance of a
structural join between employee and name elements, over
our dataset generated from the DTD in Figure 5. Along the
x-axis we vary the percentage of elements from each set that
appear in a solution. To vary this percentage, we effectively
start with the two lists of employee and name elements, and
“disassemble” a matching pair by moving the descendant to
outside the scope of the ancestor.

Figure 7 reveals several basic insights that we will see re-
peated throughout all our experiments. First, we observe
that when the percentage of matching elements is high, ad-
ditional index features do indeed have a negative impact on
running time performance, due to the fact that postings are
larger, and therefore fewer postings fit per page. For ex-
ample, at 100% matching elements, Anc performs the same
number of element scans as Basic, but has running time
that is 8% higher. At 100% matching elements, the struc-
tural join is essentially reduced to a full scan of the posting
lists. Therefore Basic, which packs the most postings per
page, has best performance. However, we believe most real-
istic structural joins will not have such a high percentage of
matching elements.

Next, observe that the Path and Anc features are only
somewhat effective, but that the combination of the two,
PathAnc, is much better. To understand this observation,
Figure 10 provides a brief intuition of how the different in-
dex features affect execution of the binary join. The Basic
index accesses almost every element in the ancestor and de-
scendent lists. Path is effective in skipping descendant el-
ements with no matching ancestors, because such elements
have non-qualifying PIDs. However, because Path cannot
effectively skip ancestor elements, its overall performance
is poor. Anc is effective in skipping ancestor elements, as
observed in [12], or efficiently recognizing when no ances-
tor exists. However, because many name elements have no
matching ancestor, many of the ancestor elements found are
not actually useful. Now, with the PathAnc combination,
only useful ancestors and descendants are accessed. First,
the join algorithm will use the Path feature to skip directly
to a useful name element. Then, the algorithm will use
Anc to skip directly to the (useful) ancestor of that element.
Thus, we have the following result:

REsuLT 1. Path and Anc may individually perform poorly,
especially when the percentage of matching ancestor and de-

o
=}
S
=

Hl Basic
Il Anc
[Path
[PathAnc
CJve

i
1S
S
=3

Running Time (s/100),

1000

100 10
Frequency of Alpha

Iiblicllelld — Ilallblicilelld

oW I —]
S s — =S Hl Basic
I S Il Anc
3, <110000] [Path
o 10 g [PathAnc
£ —— Basic [0} LJve
[-5 Path £
o 10} -6~ Anc =
£ —4— PathAnc o 100
£ - Ve £
=) =
o 10° =
0 20 40 60 80 100 14
% Matched Elements R
1’ |
Basic
2 o 16710 I Anc
8 . c [Path
& 10 7 @ 1e+08| T PathAnc
=) Llve
c —— Basic = 10406
g . -8- Path S
o 10 —©- Anc IS
w —o— PathAnc @ 10000
3t - VC [m]
" w+ 100
10
20 40 60 80 100
% Matched Elements R— liclielld

Figure 7: Structural join perfor-
mance as selectivity is varied
depth

scendant elements is low. In contrast, the PathAnc index
feature only scans useful elements, greatly outperforming both
Path and Anc.

This result is important, as it shows the relationship between
prior work and the pitfalls of using only path indices or only
ancestor information. However, our question remains: can
we exploit the complementary strengths of Anc and Path to
perform even better than PathAnc?

Looking at the performance of our virtual cursor algo-
rithm in Figure 7, we can see that the answer is “yes”. The
virtual cursors algorithm consistently has best performance,
by up to a factor of 3 over PathAnc, except at a very high
percentage of matching elements. Because virtual cursors
are based on the PathAnc feature set, it too is outperformed
by Basic when 100% elements match; however, in this sce-
nario virtual cursors still have better performance than reg-
ular PathAnc by 16%. Again, we refer to Figure 10 for the
intuition of this performance improvement. We can see that
VC has the same good skipping performance as PathAnc on
the descendant posting list, and does not need to access the
ancestor posting list.

In the remainder of this section, we will investigate the
factors that affect the effectiveness of virtual cursors. We
will find that, although virtual cursors provide large perfor-
mance gains for binary structural joins, they are even more
advantageous in more complex joins.

6.2 Holistic Joins

In this section, we continue our analysis of index fea-
tures over more complex queries, using the latest holistic
join algorithms [14]. To this end, we select five query pat-
terns to execute over our third dataset, representing path
and twig queries: (P1) §//E//D; (P2) a//A//B//C; (P3)
//A//B][C//a; (P4) a/JA/[B & //Cl; (P5) //A//B[//C
& //a]. All five patterns contain a variable that allow us
to study queries with different properties. In pattern P1,
the variable é can be replaced with a path expression, such
as “//a//b//c”, or null. Varying § allows us to study path
queries of varying depths. In patterns P2 through P5, the
variable a can be replaced with any single tag. Recall that
different tags in our third dataset have varying frequencies.
By comparing across tags with varying frequencies, we can

Figure 8: Experimental results
for pattern P1 (6//E//D): varying

n1e+08
o

8

N1e+06 [PathAnc
e CJve

Q

£10000

K}

w

3 100

1000 100 10
liblicllelld — liallblicliel/d Frequency of Alpha
Figure 9: Experimental results
for pattern P2 (a//A//B//C):
varying top selectivity

study path and twig patterns where branches have varying
selectivities. In particular, in each of the patterns, we will
replace a by the tags D, E; F and G. Notice also that the
placement of a within the query expression is important: a
query with a selective join at the “top” of the expression has
different properties from a query with a selective join at the
“bottom.”

Figures 8 to 13 show us the performance of each of the
query patterns over our third data set, in terms of both
running time and number of elements scanned.

Path Queries. Let us first consider Figure 8. Across the
x-axis, we vary the value of § (in the figure we show the full
query expression). As the depth of the query increases, two
contrasting factors come into play: First, fewer elements
of a given tag are useful, so there is greater potential for
skipping useless elements. On the other hand, the number of
internal query nodes increases, which increases the number
of element sets we must handle.

We observe from Figure 8 that the relative advantage
of virtual cursors increases as the depth of the query in-
creases. For example, virtual cursors scan half the elements
as PathAnc for query “//e//d”, but a whole order of mag-
nitude fewer elements for query “//a//b//c//e//d”. The
reason behind this observation is the following: As we ob-
served earlier, virtual cursors allow us to completely elimi-
nate scans and I/Os pertaining to ancestor elements. Since
deeper queries result in a larger number of ancestor element
sets, virtual cursors provide a larger relative benefit for deep
queries.

Note that for query “//a//b//c//e//d,” the running time
of virtual cursors increases slightly relative to PathAnc. The
reason is that as the query becomes deeper, the overhead of
the join algorithm itself increases; therefore, the savings in
I/O and element scans afforded by virtual cursors are less
apparent, though still significant.

Now comnsider path queries of fixed depth, as we vary the
selectivity of the joins. In both Figures 9 and 11, we vary
the selectivities of the top and bottom joins in the path
expression, respectively, by varying the tag a. We show
the relative frequency of «, which is proportional to the
size of the join result (e.g., @ — A), along the x-axis. In

~—30000
8 Hl Basic
il Il Anc
& 1000 Il Path
) [PathAnc
£ Cve
i 100
2
£ 10
c
S
X 1
1000 100 10 1
Frequency of Alpha

1e+08 Hl Basic
2 Il Anc
Sle+06 [Path
(%] [PathAnc
p CJve
10000
£
K]
i 100
3t

1000 100 10 1
Frequency of Alpha

Figure 11: Experimental results
for pattern P3 (//A//B//C//a):

varying bottom selectivity

Running Time (s/100)

1000 100 10 1 1000
Frequency of Alpha

Hl Basic
Il Anc
[Path
[PathAnc
CJve

N

Element Scans
o -
o (52 = % N w w

1 mm

1000 100 10
Frequency of Alpha

Figure 12: Experimental results
for pattern P4 (//a//A[//B &
//C]): varying top selectivity

Running Time (s/100)

2000
Hl Basic
Il Anc
1500 I Path
[PathAnc
‘ Clve
0 =1 L)

1000 100 10 1
Frequency of Alpha
6
3% 10
» Hl Basic
c 25 Il Anc
3 B Path
n 2 [PathAnc
=
15 CJve
51
[}
3 05
o
1000 100 10 1
Frequency of Alpha

Figure 13: Experimental results
for pattern P5 (//A//B[//C &
//a]): varying bottom selectivity

Figure 9, we see virtual cursors afford roughly a factor of
4 speedup across all selectivities. Thus, when the top join
selectivity is varied, the effectiveness of virtual cursors, while
significant, is mostly unaffected. However, when we increase
the selectivity of the bottom join result (by decreasing the
frequency of «) in Figure 11, the impact of virtual cursors
increases. For example, when the relative frequency of «
is 1000, virtual cursors provides a speedup factor of 3 over
PathAnc, but when relative frequency of « is 10, virtual
cursors provide a speedup factor of over 50. The explanation
is as follows: as the result size of the bottom join decreases,
the number of leaf element scans decreases with respect to
the total number of scans. Since virtual cursors only scan
leaf elements, its relative performance improves as the result
sizes of bottom joins decrease.

Twig Queries. Now let us consider holistic twig queries
in Figures 12 and 13. At the high level, we see similar be-
havior to that observed for path queries: the advantage of
virtual cursors remains largely unaffected when top selectiv-
ity is varied (Figure 12), but increases as bottom selectivity
increases (Figure 13). For example, in Figure 13, when the
relative frequency of « is 1000, virtual cursors provide a
speedup factor of 3, while when the relative frequency is 10,
virtual cursors provide a speedup of 6.

We note that speedup factor observed for twig queries in
Figure 13 is not has high as it is for path queries in Fig-
ure 11. The explanation is that in query pattern P5, we are
only varying the selectivity of one of the branches. Because
the other branch remains highly unselective, overall query
performance cannot improve by the same factor as with path
queries.

The reason we only varied one of the branches is to point
out a special case in which Anc performs exceptionally well.
When at least one branch of a twig query is highly selective,
the major benefit of skipping elements comes from ances-
tor skipping. In contrast, Path is barely more helpful in
skipping descendant elements than Basic. As a result, as
selectivity increases in Figure 13 (frequency of o decreases),
the number of element scans performed by Anc approaches
that of PathAnc. Since Anc is more “lightweight”, in that
it packs more postings into a page, it actually has better

running time than PathAnc. However, we note that virtual
cursors still outperform Anc by at least a factor of 3.

In summary, we have the following result characterizing
the performance of virtual cursors:

RESuLT 2. The virtual cursor algorithm consistently and
significantly improves the runtime performance of struc-
tural joins in almost every scenario, and especially when
queries are deep and/or lower joins are selective.

6.3 Overhead of Index Features

While the previous two sections have clearly demonstrated
the dominant performance of virtual cursors, it is still un-
clear as to what the overhead is for the index features —
path indices and ancestor information — that enable virtual
cursors. In this section, we will explore this overhead, and
the tradeoffs with virtual cursor performance.

6.3.1 Path Indices

The overhead of path indices are two-fold: the path index
itself, and the integration of path IDs into the inverted index.
The worst-case overhead for path indices occurs when there
exist a large number of distinct paths in the dataset. In
such a scenario, the path index itself can grow to the size
of dataset (e.g., if all paths are unique), and the process of
identifying qualifying path IDs can become expensive.

The size and build cost of path indices have been studied
numerous times (e.g., [9, 18]), and it is outside the scope
of this paper to rehash the subject. It is true that in the
worst case where every path in the dataset is unique, a path
index adds tremendous overhead; however, a more useful
question is: is the overhead acceptable in a reasonable class
of applications?

For the Trevi intranet search engine, our target applica-
tion is a text-centric dataset. Text-centric datasets, such as
XMark, tend to have simple structure; as a result, the path
index is small and efficient to build and use. For example,
a 1GB XMark dataset results in a Basic uncompressed in-
verted index of size 4.05 GB, while the path index is only
68KB. Likewise, the time to build the path index is negli-
gible compared to the time to build the inverted index. A
larger overhead comes from integrating path IDs into the

Table 2: Average and maximum depths for datasets.

inverted index — these increase the size and build time of
the XMark database by roughly 10%. Nevertheless, these
“static” costs are relatively minor given the query runtime
performance benefits observed in the previous section.

In addition, even more complex datasets still result in
reasonable path indices. For example, our default synthetic
dataset has over 3000 distinct paths — much larger than
we would expect in any dataset with a complex DTD. Yet
the size and build time of the path index is still less than
1% of the size of build time of the inverted index. In our
runtime experiments, the time to identify qualifying PIDs
never exceeds 5% the total cost of processing a query, and
even this small cost can be eliminated by pre-processing the
qualifying path IDs as described in Section 4.1.

Because we expect 3000 to be an upper limit for many rea-
sonable applications (though certainly, not all applications),
and because the major runtime cost can be eliminated by
pre-processing, we do not believe the path index to pose
significant overhead issues.

6.3.2 Ancestor Information

There are many advantages of BEL encoding over Dewey
encoding. Most importantly, BEL is a more compact en-
coding, and as a result, fewer I/Os may be necessary to
process queries. In particular, as the depth of the dataset
increases, the overhead of storing Dewey increases propor-
tionally, whereas the overhead for storing BEL remains con-
stant.! Since there is no bound on the depth of an XML
document, the overhead of Dewey can become arbitrarily
bad. Again, however, our question is whether the overhead
is acceptable in a reasonable class of applications.

To study the overhead of Dewey encoding, we will com-
pare the performance of each of the four feature sets — Ba-
sic, Anc, Path, and PathAnc — as the depth of the dataset
increases. We will use the default synthetic dataset, but ar-
tificially pad elements with a number of “junk” ancestors.
By controlling the depth of the padding, we can control the
overall depth of the dataset. We then compare the perfor-
mance of index size, index build, and query runtime across
feature sets, and across dataset depths. The average and
maximum depths of these datasets are shown in Table 2.
Dataset A represents the typical depth characteristics of
a text-centric dataset. For reference, we include the 1GB
XMark dataset as well.

Compression. In the worst case, when Dewey encod-
ing is not compressed (e.g., a fixed number of bytes is used
to represent each component in the address), the size of
the encoding for a given element will increase linearly with
its depth. Luckily, there are many proposed techniques for
compressing Dewey, such as [20]. The compression scheme
in [20] not only represents Dewey elements in almost an or-

'Overhead of BEL may be affected, for example, depending
on how elements are compressed. Larger values tend not to
compress as well.

Name Average depth | Maximum depth Feature Set A B C D XMark
Dataset A 7.7 16 Basic 324 | 81.0 | 161.9 | 323.7 | 4.05 GB
Dataset B 16.4 37 Anc (Dewey) 40.0 | 136.5 | 396.4 | 1299.2 | 5.30 GB
Dataset C 30.8 62 Path (PID) 36.6 | 91.4 | 182.8 | 365.6 | 4.59 GB
Dataset D 59.2 122 PathAnc (PID+Dewey) | 44.1 | 146.8 | 417.5 | 1342.5 | 5.81 GB
XMark 9.1 13

Table 3: Index size (MB) over datasets without com-

pression.
Feature Set A B C D XMark
Basic 103 | 27.2 | 61.6 | 130.9 950
Anc (Dewey) 11.6 | 344 | 94.6 | 349.6 1118
Path (PID) 12.7 | 36.4 | 83.4 | 229.4 1044
PathAnc (PID+Dewey) | 13.8 | 42.4 | 111.9 | 319.7 | 1149

Table 4: Index build time (s) over datasets without com-
pression.

der of magnitude fewer bytes as the uncompressed scheme,
but it also allows faster comparisons of Dewey-encoded el-
ements as single numeric values. While individual values
in BEL encoding may also be compressed, the potential for
compression is much higher with Dewey encoding.

However, it is impossible to fit a comprehensive perfor-
mance comparison of all possible compression schemes for
Dewey encoding within the scope of this paper. Instead,
we have chosen to study uncompressed indices as the worst-
case scenario for Dewey encoding. The motivation is that
if we can show that uncompressed Dewey encoding has an
acceptable overhead, then intelligent compression schemes
can only further improve performance.

Index Size and Build Time. Table 3 shows us the
sizes of the inverted index for each feature set, across the
different datasets, while Table 4 shows us index build time.
From these tables, we see that deeper datasets have a large
impact on these “static” properties of the index. For exam-
ple, the difference in index size cause by Dewey encoding
(i.e., between PathAnc and Path, or Anc and Basic), is al-
most a factor of 4 for Dataset D, where average depth is 60
and maximum depth is 122. However, the difference in in-
dex size caused by Dewey encoding in Dataset A or XMark,
which has characteristics typical of a text-centric dataset, is
only 25-30%. Furthermore, we will see shortly that even for
deep datasets, runtime performance is still best using virtual
cursors over the PathAnc feature set.

While we do not discuss updates in detail, existing work in
this area shows that both updates on path indices [16], and
updates over an Anc index using Dewey encoding [20] can be
performed efficiently relative to updates over a Basic index.
In many cases Dewey encoding can actually improve update
efficiency. The integration of PIDs into the inverted index
will also not greatly increase update costs — in fact, element
insertion/deletion cost is not affected at all. A detailed anal-
ysis of update overhead across integration approaches is left
as future work.

Query Runtime. While the storage overhead of Dewey
encoding is significant for deep datasets, the real cost of
a large index is the extra I/Os necessary to process queries
over the index. Hence, we may be willing to overlook storage
cost, if Dewey encoding can still result in better query run-
time cost. In addition, in a text-centric application where
index rebuilds are infrequent, again, a large build time is
acceptable if query runtime is faster.

i
o
=3
=3
=
o
=3
=3

~ = : 5 300 -
S Il Basic S Il Basic S Hl Basic
3 Il Anc ha) Il Anc < 250 Bl Anc
~ [Path €@ [Path KD [Path
o 100 1 PathAnc o 100 [PathAnc | | o 200] PathAnc | |
£ vc £ Llve £ 150 Live
S - =
£ 10 2 10 2100
z £ £
5 £ € 50
@ 3 =1

1 o 1 xr o

771 1641 3082 59.2 771 1641 3082 59.2 771 1641 30.82 59.2
Average Element Depth Average Element Depth Average Element Depth

Figure 14: Running time for Figure 15: Running time for Figure 16: Running time for

path query //B//C//E//D

To study the effect of document depth on running time,
we choose three representative queries from the previous two
sections, as shown in Figures 14 to 16. In these figures, we
vary the datasets used to process the query. The different
datasets have different average element depths, which we
display. Two queries are path expressions of varying depth,
while the third is a twig expression. All expressions have
moderate selectivity, so as not to bias the advantages of
virtual cursors one way or the other.

From these figures, we find that, as expected, increasing
depths degrade the running of time over the feature sets that
use Dewey encoding (i.e., Anc, PathAnc, and VC). This ef-
fect is most clearly seen in Figure 16, where PathAnc quickly
becomes the worst-performing feature set, and virtual cursor
performance degrades by almost a factor of 4.

However, we see that in all cases, virtual cursors still re-
sult in significantly, consistently improved running times.
For example, consider the path query //B//C//E//D shown
in Figure 14. Over Dataset A, where average depth is 7.71
and maximum depth is 16, virtual cursors result in over
two orders of magnitude faster running time than Basic,
and is over three times faster than the next-best alternative,
PathAnc. When the average element depth increases to 59,
the running time of virtual cursors triples. However, it is still
30 times faster than Basic, and almost 3 times faster than
PathAnc (which is also affected by dataset depth). Please
refer back to Figure 10 and the discussion in Section 6.1 for
the explanation on why virtual cursors perform so well.

Again, because there is no bound on document depth, we
can construct datasets in which performance of virtual cur-
sors, which depends on ancestor information, is arbitrarily
bad. However, for a large range of reasonable depths, on
indices that are not compressed, we find that virtual cursors
still have far superior performance over all other feature sets.
Our conclusion is thus that if an application is known to have
very deep datasets (e.g., average depth in the hundreds),
then they should avoid using Dewey encoding. Otherwise,
for the broad class of applications with document depths
less than hundred, virtual cursors can speed up queries by
several factors to several orders of magnitude.

7. CONCLUSION

In this paper, we described how path indices and ancestor
information could be combined in a novel way to replace one
more more of the physical index cursors in a structural join
with virtual cursors. We showed how virtual cursors could
easily be incorporated into existing algorithms for structural
joins, and then provided experimental results showing their
performance benefit. Our results show that, by eliminating
index I/O and the processing cost of handling physical in-

path query //C//E//D

twig query //A//B[//C & //E]

verted lists, virtual cursors can improve the performance of
holistic path queries by an order of magnitude or more in
most scenarios.

8.
(1]
(2]
(3]
(4]

(8]
(9]

(10]

(11]

(12]
(13]
(14]

(18]

(16]

(17]

(18]
(19]

(20]
(21]

(22]

(23]

REFERENCES
S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava,
and Y. Wu. Structural joins: A primitive for efficient xml query
pattern matching. In ICDE, 2002.
J. Bremer and M. Gertz. On distributing xml repositories. In
WebDB, 2003.
N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
Optimal xml pattern matching. In ACM SIGMOD, 2002.
S. Chien, Z. Vagena, D. Zhang, V. Tsotras, and C. Zaniolo.
Efficient structural joins on indexed xml documents. In VLDB,
2002.
World Wide Web Consortium. Xquery 1.0: An xml query
language, August 2001. http://www.w3.org/TR/xquery/.
Extended technical report. Available upon request.
Marcus Fontoura, Jason Zien, Eugene Shekita, Sridhar
Rajagopalan, and Andreas Neumann. High performance index
build algorithms for intranet search engines. In VLDB, 2004.
H. Garcia-Molina, J. Ullman, and J. Widom. Database System
Implementation. Prentice Hall, 2000.
R. Goldman and J. Widom. Dataguides: enabling query
formulation and optimization in semistructured databases. In
VLDB, 1997.
G.Salton and M. J. McGill. Introduction to modern
information retrieval. McGraw-Hill, 1983.
L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank:
Ranked keyword search over xml documents. In SIGMOD,
2003.
H. Jiang, H. Lu, W. Wang, and B. C. Ooi. Xr-tree: Indexing
xml data for efficient structural join. In ICDE, 2003.
H. Jiang, W. Wang, and H. Lu. Efficient processing of xml twig
queries with or-predicates. In SIGMOD, 2004.
H. Jiang, W. Wang, H. Lu, and J. Yu. Holistic twig joins on
indexed xml documents. In VLDB, 2003.
R. Kaushik, P. Bohannon, J. Naughton, and H.F. Korth.
Covering indexes for branching path queries. In SIGMOD,
2002.
R. Kaushik, P. Bohannon, J. Naughton, and P. Shanoy.
Updates for structure indexes. In VLDB, 2002.
R. Kaushik, R. Krishnamurthy, J. Naughton, and
R. Ramakrishnan. On the integration of structure indexes and
inverted lists. Submitted for publication.
T. Milo and D. Suciu. Index structures for path expressions. In
ICDT, 1999.
M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Summer
Useniz Technical Conf., 1999.
I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered xml
using a relational dbms. In SIGMOD, 2002.
H. Wang, S. Park, W. Fan, and P. Yu. Vist: A dynamic index
method for querying xml data by tree structures. In SIGMOD,
2003.
Xmark: The xml benchmark project.
http://monetdb.cwi.nl/xml/index.html.
C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman.
On supporting containment queries in relational database
management systems. In SIGMOD, 2001.

