
Information Cartography: Creating Zoomable,
Large-Scale Maps of Information

Dafna Shahaf, Jaewon Yang, Caroline Suen, Jeff Jacobs, Heidi Wang, Jure Leskovec
Stanford University

{dshahaf, crucis, cysuen, jjacobs3, hjw, jure}@cs.stanford.edu

ABSTRACT
When information is abundant, users need support to understand
complex stories, such as presidential elections or economical re-
forms. We propose a methodology for creating structured sum-
maries of information, which we call zoomable metro maps. Just
as cartographic maps have been relied upon for centuries to help us
understand our surroundings, metro maps can help us understand
the relationships between many pieces of information.

Given large collection of news documents our proposed algo-
rithm generates a map of connections that explicitly capture story
development. As different users might be interested in different
granularities of story development, the maps are zoomable, with
each level of zoom showing finer details and interactions. We for-
malize characteristics of good maps and formulate their construc-
tion as an optimization problem. We provide efficient, scalable
methods with theoretical guarantees for generating maps. Pilot user
studies over real-world datasets demonstrate that the method is able
to produce maps which help users acquire knowledge efficiently.

1. INTRODUCTION
Faced with ever-increasing amounts of information, it is easy

to get lost in details and lose sight of the big picture. However,
understanding the big picture is vitally important in order to make
key decisions for our own lives, from financial decisions to political
ones. We need intelligent and easily accessible tools to help make
sense of all this information – and need it possibly more than ever.

Search engines have been traditionally relied upon for finding in-
formation. While search engines are effective in retrieving nuggets
of knowledge, their output – a list of web search results – exhibits
practically no structure. Thus, the task of fitting small nuggets of
information into a single coherent picture remains difficult.

A possible solution to above problems is to build interactive
tools that explicitly show the relations among retrieved pieces of
information. Multiple tools for summarizing and visualizing news
stories already exist. However, we believe that the output of these
systems is often not suitable for a news reader:
• Some systems’ level of resoultion is too coarse or too fine

to be useful: Capturing relations between individual named
entities [7] may be too fine grained, while relations between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

large complex and dispersed topics [5] may be too vague.
• In order to uncover the structure of a story, mumerous tools

have moved beyond list-output. Many of these approaches
[18, 19, 4] boil down to timeline generation. This style of
summarization only works for simple stories, which are lin-
ear by nature. In contrast, complex stories display a very
non-linear structure: stories split into branches, side stories,
dead ends, and intertwining narratives.
• Another popular representational choice is a graph [12]. While

a graph is surely more expressive than a timeline, these meth-
ods offer no notion of path coherence: the edges in the graph
are selected because they pass some threshold, or belong to
a spanning tree. We believe that the notion of coherent paths
facilitates the process of knowledge acquisition for the users.

Recently, we took a step in that direction and proposed the notion
of metro maps of information [17]. Metro maps are concise struc-
tured sets of documents maximizing coverage of salient pieces of
information; in addition, the maps make explicit the various ways
each piece relates to the others.

However, the current approach to metro maps has many aspects
that need improvement. For example, picking the right resolution
of a metro map can be difficult. Some users are interested in a high-
level overview, while others would like to go deeper into details.
Current metro maps support only a single level of resolution, where
each metro stop is a single news article. Current metro maps are
also unable to extract sufficient structure and relationships between
storylines. Finally, current maps are computationally inefficient,
and can only be computed for a few hundreds of documents.

In this paper we extend and scale up metro maps. Let us start by
revisiting the metro map metaphor: A metro map consists of a set
of metro lines . Each metro line is a sequence of metro stops; each
line follows a coherent narrative thread, and different lines focus on
different aspects of the story. The metro map structure lends itself
to many visualization techniques. The visualization allows users to
easily digest information at a holistic level.

Example 1. Figure 1 shows an example output map of our system
for the query “Israel”. The map contains five metro lines. The leg-
end on the left shows the important words for each line. The lines
revolve around Gaza, Iran, US diplomacy efforts, religion, and the
flotilla incident. Each line consists of nodes (metro stops), also la-
beled with important words. Hovering over a metro stop brings up
a list of articles associated with that stop. One can observe that the
Gaza and US diplomacy lines intersected during the visit of the US
envoy, and how the flotilla line splits from the blockade node.

Overview of Contributions.
In this work we advance the idea of metro maps in three major

directions:

• Metro stops: In our system metro stops are represented by

Figure 1: An example metro map for the query “Israel” generated by our system. Each color represents a storyline (going from left to right). Both
storylines and metro stops are labeled, and the user can hover over a stop to read associated articles.

sets of words instead of single documents. This allows for
great flexibility and diversity of in the structure and size of
a metro stop. Clusters can be thought of as temporal topics,
grouping together words that co-occur extensively during a
specific time window.

• Zooming: Regarding metro stops as sets of words naturally
enables zooming, as stops can naturally vary in scope, from
focused to broad. This allows users to zoom in on a topic
they are interested in, or zoom out to get a broader overview.

This fundamental change requires us to completely re-think math-
ematical formalizations of the properties of a good map. The most
important change is the development of an innovative algorithm for
the analysis of the underlying structure of a story:

• Map structure: Different stories have different structure:
some stories are almost linear, while others are a lot more
complex. The maps of [17] had the number of lines and their
length given as input, and thus could not distinguish between
linear and complex stories. We develop a new notion of map
structure that alleviates this issue.

• Scalability: Our algorithm scales far beyond what was pre-
viously possible and allows for generating maps from large
corpora of documents. As the algorithm depends on the size
of the document set only linearly, we can summarize hun-
dreds of thousands of documents.

From the technical point of view, we develop novel formaliza-
tions of metro map quality scores. In addition, we devise a new
algorithm for uncovering the underlying structure of news stories.
We also devise a novel scalable bipartite graph clustering method
that identifies densely connected overlapping clusters, which we
use to identify potentially good metro lines.
Our Approach.

Our system operates as follows. We start with a large corpora
of documents and a user-defined query (e.g., “Middle East”). We
extract all the documents containing the query and apply our graph-
based word clustering method to find clusters to be used as building
blocks for our maps. We then identify the underlying structure of
the topic. We optimize an objective function that prefers longer

coherent storylines whenever possible; this way, linear stories be-
come linear maps, while complex stories maintain their interweav-
ing threads. The objective, while hard to optimize exactly, is sub-
modular, and can be efficiently approximated within guarantees.

A topic may be very complex, but the user’s attention span is
still limited. To keep things manageable, our final step is to restrict
the size of a map. We select lines while satisfying two competing
goals: ensuring that the map covers aspects which are important to
the user, while also encouraging diversity. We rely on submodular
optimization again to optimize the map within map size budget.

We evaluate our zoomable metro maps, comparing them to a
number of competing approaches: web search, topic detection and
tracking, and our previous metro maps. Our user study shows that
zoomable metro maps help people understand a topic better: Users
preffered us to competitors up to 58%− 71.8% of the time. Com-
paring ourselves to the previous maps allows us to isolate the ben-
efits of our new framework.

2. CONSTRUCTING AN OBJECTIVE FUNC-
TION

The problem of finding a good metro map is hard, especially be-
cause it is hard to understand what we are looking for. Recognizing
whether a map is good or not is easy for humans, but it is a very
intuitive property.

We first review the desired properties of a metro map, extend-
ing and elaborating on the criteria outlined in [17]. We shall briefly
present these criteria, motivate and formalize them. Later, we present
a principled approach to constructing maps that optimizes tradeoffs
among these criteria.

2.1 General considerations
Our first concern is Scalability. We would like our maps to scale

to large corpora of documents, including millions of documents.
Our previous approach did not support this order of magnitude,
both computationally and visualization-wise. One of the challenges
of handling large corpora is picking the right granularity of a map:
some users are interested in a high-level overview of a topic, while
others would like to go deeper into details.

For this reason, we would like our maps to support Multi-resolution:
the maps should be zoomable, with each level of zoom showing

finer details and interactions. Following our map metaphor, the
higher levels of zoom should show the highways (major storylines).
As the users zoom in, they discover smaller streets, service roads,
and eventually even walking trails.

Let us now consider the building blocks of our maps. In order to
support multi-resolution, our metro stops can no longer be single
articles (as in [17]). Similar to topic representation in topic mod-
eling, we choose to focus on clusters of words as our metro stops.
Clusters should group together words from a specific time step.

Focusing on clusters naturally raises the question of Cluster Qual-
ity. Most importantly, the clusters should be cohesive: the words
belonging to the same cluster should be closely related during the
corresponding time period.

For example, consider the story of LeBron James. LeBron James
is a professional basketball player. He played for the Cleveland
Cavaliers between 2003 and 2010. In 2010, he left the Cavaliers
for Miami Heat in a highly publicized (and highly criticized) free
agency period.

Figure 2: Simplified word clusters for the story of LeBron James.
Clusters Cij belong to time step i.

Figure 2 shows (simplified) clusters for the LeBron James story.
Throughout 2003-2009, the words “LeBron James” and “Cleve-
land” are clustered together, while “Miami” is a different cluster.
In 2011, the word “LeBron” is more often mentioned with “Mi-
ami”, so it has moved to the Miami cluster.

Now that we know what our metro stops are, we focus on the
metro lines. A key requirement is that each line is Coherent: fol-
lowing the papers along a line should give the user a clear under-
standing of the evolution of a story. Most importantly, coherence
is a global property of the line. It is not enough for every pair of
consecutive clusters to be related: there should be a global theme
running through the line.

A map is more then merely a set of lines. There is a lot of infor-
mation in its Structure as well. Storylines can intersect, split and
merge. Intuitively, different stories have different structure: some
stories are almost linear, while others are a lot more complex.

Furthermore, we believe that some stories have a natural struc-
ture. For example, when asked to draw a map of the LeBron James
story, people’s maps often resemble Figure 3: The blue storyline
follows Cleveland Cavaliers and the red follows Miami Heat. The
third line, about LeBron, splits from Cleveland and joins Miami.
Our previous maps have not been able to uncover such natural
structures; in this work, we will explicitly search for it.

Our last consideration is Budget. A topic may be very complex,
but the user’s attention span is still limited. To keep things man-
ageable, we restrict the size of a map. These restrictions raise a
question of selection: which lines should be displayed to the user?

Our goal in selecting the lines is twofold: we want to ensure
that the map covers aspects which are important to the user, while
also encouraging diversity. In other words, the lines should not be
redundant. We call this property coverage under budget.

2.2 Formalizing the Objective

Figure 3: A hypothetical map that provides a high-level overview of
LeBron James’ move from Cleveland to Miami

After discussing the general properties an objective function should
satisfy, we now go ahead and formalize them. Before we begin, let
us formally define our input and output.

We assume that we are given a set of documents D, each with a
corresponding time stamp. D are the documents we want to sum-
marize and visualize; one can think of D as the result of a query.
Our output is in the form of a metro map:
Definition 2.1 (Metro Map). A metro map M is a pair (G,Π),
where G = (C, E) is a directed graph and Π is a set of paths in
G. We refer to paths as metro lines. Each e ∈ E must belong to at
least one metro line.

We note our vocabulary by W . Each document is a multiset of
W . Vertices C correspond to word clusters (subsets of W), and are
denoted by stops(M). The lines of Π correspond to aspects of the
story. As an example, the map in Figure 1 includes five metro lines.

In the following sections, we formulate the problem of finding a
good metro map givenD. We need to consider tradeoffs among the
properties of Section 2.1: Cluster Quality, line coherence, map
structure, and coverage under budget. For example, maximizing
coherence often results in repetitive, narrow-scope chains. Max-
imizing coverage leads to a disconnected map, since there is no
reason to re-use a cluster for more than one line.

As discussed in [17], it is better to treat coherence as a constraint:
a chain is either coherent enough to be included in the map, or it is
not. Cluster quality and structure costs, on the other hand, should
both be optimized. Combining this, we get:

Problem 2.2 (Metro maps: Informal). A mapM should sat-
isfy:
• High cluster quality C-qual(C)
• High structure quality S-qual(M)
• Minimal line coherence Coherence(M) ≥ τ
• High coverage Cover(M)
• Maximal map size |M∗K | ≤ K

In Sections 2.2.1-2.2.4 we formalize all of the above notions. In
Section 2.2.5 we formalize Problem 2.2 above.

2.2.1 Cluster Quality
We start by formalizing cluster quality C-qual(C). As mentioned

in Section 2.1, our primary objective for clusters is cohesion: words
in the same cluster during a period of time should be closely related
to each other. In this section we formalize this notion.

In order to find cohesive clusters, we divide the query set D into
time steps, and construct a word co-occurrence graph for each time
step. See Section 3.1 for complete details. Figure 4 gives the intu-
ition behind the process: On the left we see a co-occurrence graph.
Each node in the graph is a word, and the edge strength represents
how often the words co-occur with each other during that time step.
For example, the word “LeBron” co-occurs often with “Cavaliers”.

Next, we prune the co-occurrence graph so that only the strongest
edges remain. For example, perhaps LeBron was mentioned with

Figure 4: Left: word co-occurrence graph. Right: detecting commu-
nities.

Miami, but not often; therefore, the dashed edge in Figure 4(left)
will be pruned.

Having built the word co-occurrence graph, we aim to find clus-
ters of words that tend to co-occur (Figure 4 right). Formally, given
a word co-occurrence graph G(W,E) where W is a set of words,
we want to detect densely connected clusters Ci of words.

Moreover, we expect that the clusters may overlap. For exam-
ple, the words “basketball” and “game” are likely to appear in both
clusters. The task of finding overlapping clusters, called “over-
lapping community detection”, has been widely studied [9, 14]
and many methods are available. However, the current overlapping
community detection methods assume sparse community overlaps:
the more communities the nodes share, the less likely the nodes
would be connected. However, in our task, communities are ex-
pected to produce dense overlaps: we observe that words belonging
in multiple clusters together are often more likely to co-occur.

To come up with a notion of C-qual(C) that encourages densely
overlapping clusters, we apply BigClam [20]. In the following we
explain how to derive C-qual(C) from BigClam.

BigClam builds on a generative model for a network G which
naturally captures the formation of dense community overlaps. In
BigClam, each nodew has a latent nonnegative membership weight
Fwc to each cluster c. Given Fwc, Fuc, an edge between w, u is
created with probability:

P (w, u) = 1− exp(−
∑
c

FwcFuc)

Note that BigClam assumes dense overlaps because nodes w, c
would have higher edge probabilities if they belong to multiple
communities c together (Fwc, Fuc > 0 for multiple c).

BigClam detects community memberships Fwc using maximum
likelihood estimation. It optimizes the likelihood l(F) = P (G|F)
of a community membership matrix F :

argmax
F≥0

l(F)
∑

(w,u)∈E

log(1− p(w, u))−
∑

(w,u)6∈E

p(w, u)

After learning Fwc, we regard w as a member of a cluster c if
Fwc > δ for a given threshold. Most importantly, the likelihood
of the matrix serves as a natural cluster quality for our purpose:

C-qual(C) = l(F)

2.2.2 Coherence
After formalizing cluster properties, we turn our attention to lines.

The first properties of lines is coherence. We rely on the notion of
coherence developed in Connect-the-Dots (CTD) [16]. In the fol-
lowing, we briefly review this approach.

In order to define coherence, a natural first step is to measure
similarity between each pair of consecutive clusters along the line.

The main insight of [16], however, was that coherence is a global
property of the line, and cannot be deduced from local interactions.

Figure 5 demonstrates this idea: Suppose a line consists of three
clusters, each containing four words. The first and the second clus-
ters are similar, and so are the first and the third. However, the first
and the third do not have any word in common. Local connections
may give rise to associative, incoherent lines. On the other hand,
coherent chains can often be characterized by a small set of words,
which are important throughout many of the transitions.

Figure 5: A line of length 3. The line is not coherent, despite the
similarity of each pair of consecutive clusters.

Therefore, the problem can be transformed into an optimization
problem, where the goal is to choose a small set of words (called
‘active’ words), and score the chain based only on these words. In
order to ensure that each transition is strong, the score of a chain
(given a set of active words) is the score of the weakest link.

Coherence(d1, ..., dn) = max
W∈activations

Coherence(d1, .., dn|W)(2.1)

Coherence(d1, .., dn|W) = min
i=1...n−1

score(di → di+1|W)(2.2)

Constraints on possible activations encourage a small number of
words and smooth transitions, imitating the behavior observed for
coherent chains in [16]. Finally, the coherence of a map is defined
as the minimal coherence across its lines Π.

2.2.3 Structure
Even restricting ourselves to coherent lines, the number of lines

remains formidable. Our next goal is to find a set of coherent lines
that captures the true structure of a story. “Story structure” is a
rather intuitive property: For example, natural disasters stories usu-
ally tend to be relatively linear: a disaster strikes, relief efforts ar-
rive, recovery begins. On the other hand, stories about financial
crisis tend to involve multiple interacting actors and span many ge-
ographic locations.

In order to recover the story structure, we aim to minimize the
number of coherent lines, such that all clusters belong to some line.
Since some clusters cannot join any other cluster to form a coherent
line, we treat them as singleton lines:

S-cost(Π | C) = |Π|+ |{c /∈ Π}| (2.3)

In other words, the cost of a structure Π is the number of lines, plus
the number of clusters not covered by Π. For example, in Figure
6 two storylines (Miami and Cleveland) cover all of the clusters.
The cost of these lines is therefore 2. The quality of a structure
S-qual(Π | C) is defined to be −S-cost(Π | C).

Figure 6: Minimizing number of story lines (Equation 2.3): Note that
information about LeBron James’ switch is completely lost.

If a story is relatively linear, most of it can be captured by one
(long) coherent line. Therefore, a map optimizing this objective
would be mostly linear. Maps of complex topic, on the other hand,
would still be forced include multiple shorter lines.

Minimizing Equation 2.3 produces longer storylines whenever
possible. However, this objective suffers from one major drawback.
Consider again the story of LeBron James in Figure 6. The two
storylines (Miami and Cleveland) indeed cover all of the clusters,
but this structure is missing an important storyline: the one about
LeBron himself.

The problem seems to stem from the idea that a line going through
a cluster c covers the entire content of c. More realistically, the line
may only cover a part of the cluster. Therefore, we modify the
objective.

First, we associate each line with a set of words that it covers,
W(π). In our framework, the words associated with a line are the
words that make it coherent (see Section 2.2.2). For example, the
blue line is associated with “Cleveland” and “Cavaliers”.

When a line go through a cluster,W(π) are the only parts of the
cluster that the π covers. Refer to Figure 7 for an example: since
the blue line covered only the Cleveland part of the top-left cluster,
another line is still needed to cover “Lebron”.

Figure 7: Optimizing Equation 2.4: Although there are more story
lines, the story of LeBron James’ move is captured.

Formally, the cost of a set of lines Π:

S-cost(Π | C) =
∑
c∈C

|c \
⋃
π.c∈π

W(π)|+
∑
π∈Π

|W(π)| (2.4)

The cost is 1 for each cluster-word that is not covered by Π. This
way, if a line covers a word in multiple clusters, we only pay for
this word once: when we pick that line.

For example, in Figure 6, the cost of having no lines at all would
be the number of uncovered words: 4 + 4 + 2 + 2 = 12. The
two lines in Figure 6 cost 2 each, and leave four words uncovered
(“Lebron”, “James” in two clusters), so their total cost is 2 ·2+2+
2 = 8. The cost of each of the three lines of Figure 6 is still 2, but
they cover all of the words. Therefore, the total cost is 3 · 2 = 6,
and this solution will be preferred.

2.2.4 Budget: Coverage
We now formalize a notion of coverage. The goal of the coverage

measure is twofold: we would like high coverage maps to revolve
around important topics, while also being diverse. To achieve
this, we use the coverage notion of [6]. In the following, we briefly
review this notion.

In [6], we are given a function coverc(w), measuring how well
a cluster c covers a given word w. We then extend coverc(w) to
functions measuring the coverage of sets of clusters, coverC(w). In
order to encourage diversity, this function should be submodular.
In [6], we chose

coverC(w) = 1−
∏
c∈C

(1− coverc(w)) (2.5)

Thus, if the map already includes documents which cover w well,
coverM(w) = coverstops(M)(w) is close to 1, and adding another
cluster which covers w well provides very little extra coverage of
w. This encourages us to pick documents that cover new topics,
promoting diversity.

Now that we have defined coverage in terms of individual words,
we can turn our focus to measuring coverage for an entire corpus.
To ensure that we bias towards important words, we compute an
importance score λw for each word w. Finally, we define corpus
coverage as:

coverM(C) =
∑
w

λwcoverM(w)

The weights cause Cover to prefer maps that cover important
documents. They also offer a natural mechanism for personaliza-
tion: With no prior knowledge about the user’s preferences, we set
all of the weights to 1. This is equivalent to finding a map that cov-
ers as much of the corpus as possible. In [?] we discuss learning
weights from user feedback, resulting in a personalized notion of
coverage.

2.2.5 Tying it all Together
We have now defined all the pieces of Problem 2.2, and can now

define the objective formally. First, we formulate the problem of
finding a map without budget constraints.

In Problem 2.2, we stated that both cluster quality and structure
quality should be optimized. The structure of a map depends im-
mensely on the clusters: given bad clusters, no structure can save
the map. Therefore, cluster quality is our primary objective. How-
ever, during our experimentation we learned that top-quality clus-
ters are sometimes missing words (mostly due to noisy data). Fur-
thermore, these missing words often hinder lines from reaching the
coherence threshold. In order to mitigate this problem, we intro-
duce slack ε into our objective:

Problem 2.3. Given a set of candidate documents D, find a map
M∗ = (G∗,Π∗) over D which minimizes S-cost(Π∗ | C∗) s.t.
Coherence(M) ≥ τ,C-qual(C∗) ≥ (1 − ε)OPT-qual. OPT-qual
is the maximal C-qual(·) achievable over D; τ and ε are given pa-
rameters.

M∗ is an optimal map with no budget constraints. Next, we find
a subset ofM∗ subject to our budget:

Problem 2.4. Given a set of candidate documents D, find a map
M∗K = (G,Π) overD which maximizes Cover(M∗K) s.t.M∗K ⊆
M∗, |M∗K | ≤ K.

There are multiple ways to define the size of the map. We will
show how to restrict the number of lines and the number of clusters
in Section 3.4.

3. ALGORITHM
In this section, we devise an algorithm for solving Problem 2.4.

The approach is outlined below:

• Find optimal structure,M∗:
• Find an initial set of clusters C optimizing C-qual(C)

(Section 3.1)
• Find an initial set of lines Π optimizing S-qual(Π |
C) (Section 3.2)

• Perform local search to improve lines without sac-
rificing cluster quality (Section 3.3)

• Find a subset map |M∗K | ≤ K maximizing coverage
(Section 3.4)

The approach follows directly from our problem definition. In
order to solve Problem 2.4, we first need to find the optimal struc-
ture,M∗ (Problem 2.3). The optimal structure consists of a set of
clusters of quality close to optimum, and a (low-cost) set of lines
going through them.

In Section 3.1, we find an initial set of good clusters. In Section
3.2, we find a low-cost set of lines going through these clusters.
We then run local search in order to improve the map (Section 3.3).
Finally, in Section 3.4 we find a high-coverage subset ofM∗ satis-
fying budget constraints.

3.1 Finding Good Clusters
We start by finding an initial set of good clusters for each time

step. As mentioned in Section 2.2.1, we create a co-occurrence
graph for each time step; we then use BigClam, a fast overlapping
community detection method for undirected networks [20].

We consider two strategies when dividing D into chronological
time steps: partitioning D into steps encompasses either a fixed
amount of time or a fixed number of documents. Oftentimes, the
popularity of a query set over time varies; there are bursts of intense
popularity, followed by long stretches of relative unpopularity. As
we wish for more detail during popular times, we use the latter.

To find closely related words, we construct a word co-occurrence
graph for each time step. Nodes of the graph are individual words,
and the edge weight indicates the strength of the connection be-
tween two words. We experimented with several weighting strate-
gies; the strategy that performed the best listed the top 50 tf-idf
words for each document, and set to weight of edge (u, v) to be
the number of documents that had both u and v in that list. This
weighting mechanism disregards both rare and overly popular (and
therefore uninformative) words using tf-idf, while still favoring pop-
ular words that co-occur together frequently.

To ensure strong co-occurrence between words in resulting clus-
ters, we next prune the co-occurrence graph, removing edges whose
weights are less than 5% of the maximum achievable edge weight.
Note that this weight depends on the number of documents in each
time window.

In order to find communities in each co-occurrence graph, we
use BigClam. BigClam assumes a nonnegative membership weight
Fwc between node w and cluster c, and models a generative pro-
cess for an undirected node-node network from cluster member-
ships {Fuc} of the nodes. Given a network of words, BigClam
finds node-cluster membership weights Fuc by maximum likeli-
hood estimation. BigClam uses a block coordinate ascent approach
for maximum likelihood estimation, which is very scalable as each
iteration takes a near constant time [20].

3.2 Finding Good Lines
Now that we have a good set of clusters C, we need to find a

set of coherent lines going through them that minimizes the cost
S-cost(Π | C) (see Equation 2.4). As the number of lines is expo-
nentially large, we start by heuristically generating a pool of can-
didate lines; in Section 3.2.2 we find a subset of these lines that
minimizes structure cost.

3.2.1 Generating Candidate Lines
After finding word clusters C for each time step, we aim to group

the clusters that may form a coherent line together. Note that com-
puting similarity between each pair of clusters is not enough. In
Section 2.2.2, we noted that coherence is a global property of the
line; in other words, there should be a small set of words that cap-
tures the entire line.

We want to simultaneously find groups of words that belong to
the same clusters, and clusters that all use similar words. i.e., we
co-cluster the clusters and the words. To achieve this, we extend

[20] (see Section 2.2.1) and develop a group detection method for
a word-cluster bipartite graph.

Formally, we are given a bipartite networkB(C,W,E) whereC
is one set of nodes (the word clusters), W is the other set of nodes
(the words), andE denotes the set of the edges between the two sets
of nodes. We assume that the nodes have latent group membership
factors, and the edges in the bipartite networkB are generated from
the latent group memberships of the nodes.

The algorithm is an extension of the algorithm described in Sec-
tion 2.2.1. Word w ∈W has membership weight Fwg for group g,
and cluster c ∈ C has membership weight Hcg .

The edge probability between w and c is:

p(w, c) = 1− exp(−FwHT
c), (3.1)

where Fw, Hc are a weight vector for node w and c respectively
(Fw = Fw·, Hc = Hc·).

As before, this function has a nice probabilistic interpretation,
and allows us to compute the gradient for the likelihood of a single
node in near constant time [20].

In order to detect the groups, we fit the model, finding the most
likely affiliation factors F,H to the input bipartite network B by
maximizing the likelihood l(F,H) = logP (B|F,H) of B:

{F̂ , Ĥ} = argmax
F,H≥0

l(F,H), (3.2)

l(F,H) =
∑

(w,c)∈E

log(1− exp(−FwHT
c))−

∑
(w,c)6∈E

FwH
T
c .

To solve the problem in Eq. 3.2, we employ a block coordinate
gradient ascent approach [11], where we update Fw for each word
w with other variables fixed, and then update Hc for each word
cluster cwith other variables fixed. Finally, we add words and clus-
ters to group g if their membership weight is above some threshold.
Please refer to Section 4 for a sample output group.

3.2.2 Finding a Good Structure
Even after we found a pool of candidate lines, minimizing S-cost(Π |
C) is a hard problem; luckily, S-qual(Π | C) = −S-cost(Π | C) is
a submodular function:

Definition 3.1 (Submodularity). Function f is submodular if for
all A,B ⊂ V and v ∈ V we have f(A ∪ {v}) − f(A) ≥ f(B ∪
{v})− f(B) whenever A ⊆ B.

In other words, f is submodular if it exhibits the property of di-
minishing returns. Intuitively, S-qual(·) is submodular since adding
a line π to a set of lines always has the same cost, |W(π)|, but the
number of words that π covers for the first time can only be smaller
when added to B s.t. A ⊆ B.

Although maximizing submodular functions is still NP-hard, we
can exploit some recent results. However, most results apply to
non-negative, monotone submodular functions, and our function is
neither: in fact, it monotonically increases to some point and then
starts decreasing. First, we come up with an equivalent objective
that is non-negative. Let wc be the total number of words in clus-
ters,

∑
c∈C |c|. Our goal is to maximize

2 · wc −
∑
c∈C

|c \
⋃
π.c∈π

W(π)| −min(
∑
π∈Π

|W(π)|, wc) (3.3)

The objective is still submodular, and has the same argmaxΠ.
It is non-negative, although still non-monotone. We use [8] , that
gives a deterministic local-search 1

3
-approximation and a random-

ized 2
5

-approximation algorithm for this case.

3.3 Improving the Structure
In previous sections we found a good set of clusters and lines go-

ing through them. In this section, we apply local search to improve
the results. As defined in Problem 2.3, we are willing to sacrifice
some cluster quality in order to obtain better structure score.

At each iteration, we consider adding cluster c (which is not
completely covered) to line π. We consider the words associated
with π, and add them to c by increasing their membership weights
Fwc (see Section 2.2.1). We then compute the likelihood of this
new membership matrix, and the new structure score. We repeat
this computation for all clusters and lines. At the end of the itera-
tion, we pick the best move and apply it; the search stops when no
improvements can be made.

3.4 Finding a Map Subject to Budget Constraints
We have now solved Problem 2.3 and foundM∗. Next, we need

to find a subset of it subject to budget constraints (Problem 2.4).
Luckily, the coverage function of Equation 2.5 is submodular as

well. This time, the function is both monotone and non-negative,
so we can exploit the classic result of [13], which shows that the
greedy algorithm achieves a (1− 1

e
) approximation. In other words,

if our budget is K lines, we run K iterations of the greedy algo-
rithm. In each iteration, we evaluate the incremental coverage of
each candidate line π, given the lines which have been chosen in
previous iterations:

IncCover(π|M) = Cover(π ∪M)− Cover(M)

That is, the additional cover gained from π if we already have clus-
ters ofM. We pick the best line and add it toM.

If instead of restricting the number of lines we want to restrict the
number of clusters, we use a classical “bang-for-the-buck” greedy
algorithm instead.

3.5 Zooming
Some users are interested in a quick, high-level overview of a

topic, while others wish to delve into the details. For this reason, we
want our maps to be zoomable. As maps are very expressive, there
are multiple ways to interpret zoom interactions. In this section, we
explain how to implement three such interpretations.

Time Resolution: Zoom level may affect the resolution of a time
window, allowing users to choose between daily, weekly or even
yearly advances in the story. This is easy to implement: all we need
to do is split D into a different number of time windows (Section
3.1). Note that the pruning threshold is relative to the number of
documents in each time window; therefore, strong co-occurrences
will still be captured.

Cluster Resolution: the zoom level could be interpreted as a
measure of cluster cohesiveness: when zooming out, related clus-
ters should merge together. When zooming in, clusters should
break into their most-dense parts.

Luckily, our map formulation supports zooming naturally: Re-
fer to BigClam again (Section 2.2.1). In some cases, an edge may
happen between two nodes who do not share any community af-
filiations. To account for such case, BigClam assumes a base edge
probability ε between any pairs of nodes, which a user can specify a
priori. By varying the value of ε, the user can tune the edge density
of the detected communities, because BigClam would not detect
communities whose edge density is lower than ε. (This mechanism
is similar to setting clique size k in a clique-percolation algorithm.)

Story Resolution: Finally, the user may choose to zoom into
a particular metro line, or perhaps a metro stop. In this case, we
construct a subset of D corresponding to the user interest, and re-
run the map algorithm on these articles alone.
Of course, one may wish to combine several zooming methods.

3.6 Complexity and Running Time
We now examine the time complexity of our algorithm. The

important thing to note is that we first compile our query set D to a
sequence of co-occurrence graphs. The process of generating these
graphs is linear in D, but the size of the graph does not depend on
D at all; rather, it is always limited by the size of our vocabulary.
Thus, our dependency of the size of D is linear, and our algorithm
scales well.

The BigClam algorithm for finding communities takes O(|E|)
time for a full iteration [20]. Next, the generation of our word-
cluster bipartite graph and the group detection within this graph are
both linear processes as well.

Finally, when satisfying the budget constraints (Section 3.4), we
use a greedy algorithm. The main bottleneck in our algorithm is
the need to re-evaluate a large number of candidates. However,
many of those re-evaluations are unnecessary, since the incremen-
tal coverage of a line can only decrease as our map grows larger.
Therefore, we use CELF [10], which provides the same approxima-
tion guarantees, but uses lazy evaluations, often leading to dramatic
speedups.

Our system is able to process datasets that [17] could not handle.
For example, we generated a map concerning Mitt Romney during
the 2012 election season. The query set contained 70390 articles
(extracted from a Spinn3r [3] dataset), and the map took about 11
minutes to compute. Considering many of the bottlenecks are easy
to parallelize, we believe that we can achieve even more significant
speedups with a parallel implementation.

Note that while our system could in principle support even larger
query sets, the use case we have in mind for maps rarely necessi-
tates it. In particular, we imagine that very broad queries (“U.S.”)
would be less common than narrower ones (“health care reform”).

4. EVALUATION
In this section we evaluate our results. We start by closely in-

specting two example maps. Later, we conduct a user study in order
to evaluate the utility of the maps.

4.1 Qualitative Evaluation
Our first qualitative evaluation case is the query “Israel”. We

now follow the creation process of a map. We start by constructing
clusters from the co-occurrence graph.
Clusters. The clusters dicovered by our method successfully cap-
ture major issues related to Israel in the dataset: Iran (words in
the cluster: iran, nuclear, iranian, enrich, fuel, agency, uranium,
programs, weapons, energy, atomic...), negotiating settlements
(settlements, palestinians, netanyahu, negotiator, west, east, bank,
jerusalem, abbas, freezing, building...), assassination in Dubai
(killed, dubai, passport, mabhouh, suspect, hotel, assassinated...)
and the flotilla incident (blockades, gaza, flotilla, ships, raided,
activist, commandos...).
Lines. Next, our bipartite community detection discovers lines.
For example, our system correctly identifies the Iran line which
contains the words american, obama, iranian, iran, agency, united,
council, efforts, diplomats, weapons, nuclear, negotiator, syria, rus-
sia, enrich, uranium, sanctions, atomic, planting, energy, fuel. The
line nicely passes seven clusters, among them (iran, diplomats, pro-
grams, nuclear, syria) and (supporters, american, obama, presi-
dent, iran, security, united, council, weapons, nuclear, sanctions).

These words and clusters are highly related to the topic of Iran,
and allow for the creation of very coherent lines.
The Map. Finally, the resulting map is shown in Figure 1. The
map contains five metro lines. The legend on the left shows the
important words for each line: The top-coverage lines that were

found revolve around Gaza, Iran, US diplomacy efforts, religion,
and the flotilla incident.

Reading the map from left to right (obeying the chronological
order of events), our system successfully identifies the structure of
the story: Israel and Gaza were in conflict in 2009. Americans have
been trying to negotiate between the sides, including a visit of the
U.S. envoy (intersection of the diplomacy and Gaza lines). After
the war, the blockade persisted (blue line); in May 2010, a flotilla
intended to break the blockade (purple line splitting from blue).
The Israel-Turkey relations reached a low point after the incident
(end of the purple line).

Interestingly, the map also shows two other storylines happen-
ing in parallel: a line about religion (yellow), and a line about the
atomic bomb threat of Iran (green). Moreover, the map conveys an
additional aspect of the story. Following the green line from left
to right we can learn about the escalation of the story, including
harsher and harsher sanctions on Iran.

The yellow (religion) line originally contained only two clusters
and suppose we went to further explore it so we zoom-in. When
zooming into the yellow line, our system identifies nine new clus-
ters, some of which are pictured in Figure 8(a). In particular, the
blue line clearly reveals the Pope’s visit to Jerusalem and the red
line revolves around clashes over national heritage sites. Another
story, invisible before zooming in, describes a police investigation
over an attack on a Rabbi.

Qualitative evaluation reveals the success of our method. All
the rich structure and chronological as well as topical relationships
between various events are revealed by the map. Moreover, they are
also efficiently conveyed to the user by our automatically generated
visualization.
O.J. Simpson Map. Another map which we evaluate is a map in
Figure 8(b). This is a detail of the map corresponding to the events
around the notorious O.J. Simpson trial. The map reveals rich and
intricate structure of the O.J. Simpson trial. The blue line (about
the murder trial) and the yellow line (about the evidence) are very
closely intertwined. Following the blue line, we focus on the judge,
jury and details of the murder itself. The yellow line focuses on
physical evidence, blood samples, and the tapes with racial epithets
by an Los Angeles Police Department detective. Both lines merge
again for the verdict.

Moreover, in parallel by observing the green line we also learn
about television viewers’ fascination with the trial, and how cable
ratings soar. Interestingly, the map even captures (red line) the fact
that starting close to the time of the verdict the aftermath of the
Simpson trial focused on domestic issues (e.g., the number of black
men in their 20’s who are imprisoned, or how the trial heightened
interest in Gen. Colin Powell’s campaign). All in all, we conclude
that our system correctly identified the intricate relationships and
individual story lines of the O.J. Simpson trial case.

4.2 Quantitative Evaluation via a User Study
Evaluating metro maps quantitatively is a difficult task. There

is no established golden standard for this task, and even ground
truth is hard to define. Since the goal of the maps is to help people
navigate through information, we decided to conduct a user study.
The study aims to test whether the maps that we generate are useful
for humans seeking information about a topic.

In previous work [17], we explored the tasks that maps are most
suitable for. That work indicates that metro maps are best used
as a high-level overview of events, rather than as a tool to answer
narrow questions. To this end, we evaluate our maps by comparing
them with three established alternatives:

Google News: a news aggregator that endeavors to cluster search
results by event, in roughly chronological order [2]. Google News

was chosen because of its popularity, as Google is the first choice
of many users when seeking information on the web. To avoid bias,
we stripped the web page of the logo and typical formatting.

KeyGraph [15]: a graph-based topic detection and tracking (TDT)
solution. Topic Detection and Tracking is a well-established area
of research dealing with capturing the rich structure of events and
their dependencies in a news topic. KeyGraph was selected because
of its structured output.

Previous Maps [17]: our previous work on maps. We wish to
compare our work to our previous work. However, our previous
work would not scale to our current query set size. For the sake of
the comparison, we decided to first run our clustering step (Section
3.1), and treat each cluster as a single document for the algorithm
of [17]. Note that this comparison favors our previous map design
as in its original form it simply would not be able to scale to the
dataset size. In addition, as both systems operate over the same set
of metro stops, we can attribute differences in performance entirely
to our new formalizations of structure and coverage metrics.
Datasets. For the user study, we extracted two sets of articles from
the New York Times: one about Obama’s presidency in 2009, and
another about the O.J. Simpson trial in 1995. These two stories
have been selected to gauge the effect to story recency on our re-
sults. Our New York Times corpus contained tens of thousands of
articles; the Obama query set contained ≈ 4000 articles, and the
O.J. dataset contained ≈ 2000.

Note that Google News maintains its own database of news in-
formation, which is a superset of our dataset.
Preprocessing. The dataset we use contain undesired HTML, and
other relics of web scraping. During a pre-processing step, we
clean the dataset of such documents by checking for duplicates,
matching URLs against blacklists, and running the data through
an HTML parser. To better reflect the bag-of-words model that
our algorithm assumes, we also remove stop words, and compile
word counts based on their stemmed representation according to
the Porter Stemmer.

4.2.1 Study Procedure
We conduct the study with 27 in-person users. Users were affili-

ated with Stanford, and were compensated for their time. In the first
phase of the study, each user is randomly assigned two new sum-
marization systems out of the four competitors: one to learn about
Obama’s actions in 2009, and one to learn about the O.J. Simpson
trial. Our goal was to test which system helped the users to better
understand the big picture.

We believe that the true test of one’s own understanding of a
topic is their ability to explain it to others. Therefore, we asked our
participants to write a paragraph for each story, summarizing the
story to someone not familiar with it.

In the second phase, we used Amazon Mechanical Turk [1] to
evaluate the paragraphs. At each round, workers were presented a
two paragraphs (map user vs. competitor system user). The workers
were asked which paragraph provided a more complete and coher-
ent picture of the story; in addition, they justified their choice in a
few words. We collected 1000 online evaluations this way.

The in-person user-study guarantees high-quality paragraphs, while
the Mechanical Turk service allows us to obtain more accurate sta-
tistical information with a larger sample size.

4.2.2 Results and Discussion
Baseline Preferred us p-value
Google 71.8% < 1.0 ∗ 10−16

TDT 63.1% 2.0 ∗ 10−7

Previous Maps 58% .0021
The table above displays the study results for all three baselines.

(a) Zooming into the yellow line of Figure 1 (b) OJ Simpson Map

Figure 8: Sample maps.

“Preferred us” is the percentage of paragraphs generated by our
system that users preferred over the paragraphs generated using the
baseline. Our maps win all three comparisons, with percentage
as high as 71.8% against Google News. The p-values resulting
from all baselines are less than 0.01/3 = 0.0033, showing that our
results are significant with 99%, using the Bonferroni correction.

As noted earlier, both previous and new map representations op-
erate over the same set of clusters. Therefore, the gap (58% : 42%
in favour of the new maps) is due to our new structure and coverage
algorithms.
User Feedback:. We have asked users of the first phase for some
feedback regarding the systems they have tested. 84.6% of the
users who have used our new map representation have preferred
it to the competitor. Sample comments included:

“It was so nice to see the different lines. I immediately could
tell some of the important things I should write in the paragraph” /
“The labels on the circles [metro stops] were of tremendous help.”
/ “Getting a sense of time makes a big difference for me. I can also
see which things are close to each other and which are unrelated.”

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed a scalable algorithm for creat-

ing metro maps. Given a query and a large colletion of documents
our system extracts and visualizes interconnected storylines based
corresponding to the topics associated with the query. Our sys-
tem pays particular attention to the structure of the maps, and ac-
commodates different granularities of information through multi-
resolution zooming. Our system reveals nuances and connections
between events in a manner that is easily understandable by hu-
mans. The system is scalable since the runtime is only linear in
the size of the map, i.e., size of the query result set. Evaluation
based on a user study, as well as manual inspection of extracted
maps reveals superior performance of our system when compared
to present state of the art. Overall, users tend to glean better under-
standing of events with metro maps than with competing systems.

Potential directions for future work include automatic query gen-
eration and refinement based on temporal dynamics of news. An-
other fruitful venue is in generating “infinite” maps where users
can seamlesly navigate the whole space of topics and events. Novel
metro map visualization and user interaction techniques would also

be interesting to explore. Most importantly, we hope this line of
work will find practical uses and help people deal with everincreas-
ing problem of information overload.

6. REFERENCES
[1] Amazon mechanical turk, http://www.mturk.com/, 2013.
[2] Google news, http://news.google.com/, 2013.
[3] Spinn3r, http://spinn3r.com/, 2013.
[4] James Allan, Rahul Gupta, and Vikas Khandelwal. Temporal

summaries of new topics. In SIGIR ’01, 2001.
[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent

Dirichlet allocation. JMLR, 2003.
[6] Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin.

Turning down the noise in the blogosphere. In KDD ’09, pages
289–298, New York, NY, USA, 2009. ACM.

[7] Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast
discovery of connection subgraphs. In KDD ’04, 2004.

[8] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrak. Maximizing
non-monotone submodular functions. In FOCS ’07, pages 461–471,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] S. Fortunato. Community detection in graphs. Physics Reports,
486(3-5):75 – 174, 2010.

[10] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos,
Jeanne VanBriesen, and Natalie Glance. Cost-effective outbreak
detection in networks. In KDD, 2007.

[11] Chih-Jen Lin. Projected gradient methods for nonnegative matrix
factorization. Neural Computation, 19(10), October 2007.

[12] Q Mei and C Zhai. Discovering evolutionary theme patterns from
text: an exploration of temporal text mining. In KDD ’05, 2005.

[13] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the
approximations for maximizing submodular set functions.
Mathematical Programming, 14, 1978.

[14] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the
overlapping community structure of complex networks in nature and
society. Nature, 435(7043):814–818, 2005.

[15] Hassan Sayyadi, Matthew Hurst, and Alexey Maykov. Event
detection and tracking in social streams. In ICWSM, 2009.

[16] Dafna Shahaf and Carlos Guestrin. Connecting the dots between
news articles. In KDD ’10, 2010.

[17] Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. Trains of thought:
Generating information maps. In WWW ’12, 2012.

[18] Russell Swan and David Jensen. TimeMines: Constructing Timelines
with Statistical Models of Word Usage. In KDD’ 00, 2000.

[19] Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong, Xiaoming
Li, and Yan Zhang. Evolutionary timeline summarization: a balanced

optimization framework via iterative substitution. In SIGIR’ 11,
2011.

[20] J. Yang and J. Leskovec. Overlapping community detection at scale:
A nonnegative matrix factorization approach. In WSDM, 2013.

