
A New Life for
Group Signatures
A New Life for
Group Signatures

Dan Boneh

Stanford University

Group Signatures: intuition

Simple solution: give all users same private key …

… but, extra requirements:
− Ability to revoke signers when needed.
− Tracing Authority: trapdoor for undoing sig privacy.

Key Issuer
User 1

User 2

Is sig from
user 1 or 2?

msg

sig

History

−D. Chaum and E. van Heyst. [EC ’91]

−N. Baric and B. Pfitzman [EC ’97]

−G. Ateniese, J. Camenisch, M. Joye, G. Tsudik [EC ’00]

−J. Camenisch and A. Lysyanskaya. [Cr ’02]

−G. Ateniese, D. Song, and G. Tsudik [FC ’02]

−M. Bellare, D. Micciancio, and B. Warinschi [EC ’03]

This talk

Recent real-world applications.

Privacy definitions and models.

− Zoology: 9 models for group sigs …

New group sig constructions [BBS ’04]

− Very short. Very efficient.
− Based on Strong-DH (using bilinear maps)

Basic group signatures [BMW’03]

Basic: tracing, but no revocation (static groups).

Group sig system consists of four algorithms:

− Setup(λ,n): λ = sec param. n = #users.
Output: group-pub-key (GPK), (GSK1 , …, GSKn) ,

group-tracing key (GTK)

− Sign(M, GSKi): outputs group signature σ on M.

− Verify(M, σ, GPK): outputs `yes’ or `no’

− Trace(M, σ, GTK): outputs i ∈ {1,…,n} or `fail’

Precise security requirements: later …

Recent Applications for Group Sigs

Two recent “real-world” applications:

1. Trusted Computing (TCG, NGSCB)

2. Vehicle Safety Communications (VSC)

App. 1: Trusted Computing

TCG: Trusted Computing Group (aka TCPA).

NGSCB: Next Gen Secure Comp Base (aka Palladium)

Provides new capability: Attestation.
− Enables an application to authenticate its executable

code to a remote server.

− Uses: home banking, online games, … , DRM

(Very) High level architecture

SSC: Security Support Component (“tamper resistant” chip)

−Issues: certNXS = [hash(nexus-code), nxs-pub-key, sig-ssc]

priv, pubAPP , certAPP

Nexus

App1 App2App

Untrusted OS

Untrusted Side Secure Side

User spc
Kernel

HAL SSC priv, pubSSC, certSSC

Nexus: Protects and isolates apps on secure side.
−Issues: certAPP = [hash(app-code), app-pub-key, sig-nxs]

priv, pubNXS , certNXS

Attestation: app uses cert-chain = [certAPP, certNXS, certSSC]
in key exchange with remote server.

Privacy Problem

SSC’s cert is sent to remote server on every attestation.
− SSC’s cert identifies machine (recall Intel unique x86 ID’s)

− Attestation breaks privacy tools (e.g. anonymizer.com)

Ø Simple solution: give all SSC’s same priv-key and certssc.

Bad idea: no way to revoke compromised SSC.

Ø Initial TCG Solution: Privacy CA.

Trusted online service that anonymizes SSC’s cert.

Ø Better solution: group signatures. No online service [Brickell]

Group is set of all SSC’s.

Manufacturer embeds a group priv-key (GSK) in each SSC.

certNXS issued by SSC does not reveal machine ID.

Trace and revoke SSC key in case of SSC compromise.

App. 2: Vehicle Safety Comm. (VSC)

Car 1 Car 2 Car 3 Car 4

brake

1.

2. Car Ambulance

out of my
way !!

Ø Require authenticated (signed) messages from cars.

− Prevent impersonation and DoS on traffic system.

Ø Privacy problem: cars broadcasting signed (x,y, v).

Ø Clean solution: group sigs. Group = set of all cars.

Ø Project requirement: msg-size < 300 bytes

⇒ Need short group signatures.

Characteristics of both applications

Signing key in tamper resistant chip in user’s hands.

− Signing key embedded at manufacturing time.

Revocation only needed for tamper resistance failure.

− Infrequent. (unlike a private subscription service)

− Tracing may or may not be needed.

Group signatures: basic definitions

Def: A Basic Group Signature (static groups & tracing)

(setup, sign, verify, trace)

is secure if it has:

1. full-privacy property, and
2. full-traceability property.

[BMW’03]

(CCA) Full-Privacy

No poly. time alg. wins the following game with
non-negligible advantage:

Run Setup
GTK

GPK, (GSK1 , …, GSKn)
σ

Trace(GTK, σ)

σ* = Sign(M*, GSKib
)

M*, i0, i1
b ← {0,1}C

h
al

ln
g

er

A
tt

ac
ke

r

b’ ∈ {0,1}
b = b’

?

• Open problem: efficiently handle CCA2 tracing attack.
Instead, will use: CPA-full-privacy

σ? σ*

Full-Traceability

No poly. time alg. wins the following game with
non-negligible probability:

Run Setup
GSK1…GSKn

GPK, GTK

j1 , j2 , j3 , …

GSKj1 , GSKj2
, GSKj3

, …

C
h

al
ln

g
er

A
tt

ac
ke

r

(m1, i1) , (m2, i2) , (m3, i3) , …

σ1 , σ2 , σ3 , …

(m
*
, σ

*
)

1. Verify(m*, σ*, GPK) = ‘yes’

2. (m*, σ*) ∉ { (m1, σ1), … }

3. Trace(m*, σ*, GTK) ∉ { j1, … }

Attacker wins if :

Resulting properties (informal)

Unforgeability. Group sig is existentially unforgeable under
a chosen message attack.

Unlinkable. Given two group sigs it is not possible to tell
whether they were generated by same user.

No Framing. A coalition of users cannot create a signature
that traces to a user outside the coalition.

Note: no exculpability. Key-Issuer might be able to forge
signatures on behalf of a given user.
− ACJT’00, BBS’04 provide exculpability.
− May not be needed in real world (e.g., none in std. PKI)

Revocation Mechanisms

Revocation goal (intuition):
− After users {i1, …, ir} are revoked they cannot issue

new valid group sigs.

For now, ignore validity/privacy of old group sigs.

Revocation Mechanisms (easiest → hardest)

Type 0: For each revocation event, generate new GPK.
Give each unrevoked user its new private key.

Type 1: For each revocation event, send a short
broadcast message RL to all signers and all verifiers.

(msg-len independent of group size)
− Implementation: [CL’02]

verifiers: (GPKold, RL) → GPKnew

active user i: (GSKi,old , RL) → GSKi,new

Type 2: For each revocation, send msg to verifiers only.
− Implementation: Verify(GPK, (m,σ), RL)
− Note: old sigs of revoked users are no longer private.

Tracing Mechanisms (easiest → hardest)

Type 0: No tracing possible.

Type 1: Given a black box signing device, can identify
at least one member of coalition that created device.
− Note: Tracesig(.) (GTK) is now an oracle alg.
− Definition: similar to full-traceability.

Type 2: Full-traceability. Given a signature, can identify
at least one member of coalition that created sig.

Zoology: Group signature types

[3rd dimension: exculpability (yes/no)]

RT2RT1RT0

TT2

TT1

TT0

CL’02
BBS’04

BMW ‘03
ACJT ‘00

BBS’03

AST’02

(built in tracing)

BBS’04 Lite

Global key with
NNL broadcast enc.

Global
Secret Key

revoke
Trace

• Each square below requires precise def (as for RT0-TT2)

Constructions:

Construction from general primitives [BMW’03]

− Uses public key encryption,
Signature scheme,
Non-Interactive Zero Knowledge.

Specific constructions (using Fiat-Shamir heuristic) :

− Based on the Strong-RSA assumption [ACJT’00, …]

− New: Based on the Strong-DH assumption [BBS’04]

• Much shorter sigs than Strong-RSA counter-part.

Strong Diffie-Hellman [BB ’04, BBS ’04]

n-SDH problem: let G be a group of prime order p.
− Input: g, gx, g(x2), g(x3), …, g(xn) ∈ G

− Output: (A, e) s.t . Ax+e = g

[Strong-RSA: given (N,s) output (A,e) s.t. Ae=s (N)]

n-SDH Assumption: “n-SDH problem is hard for rand x”

Evidence n-SDH is a hard problem:

Thm: An algorithm that solves n-SDH with prob. ε in
a generic group of order p requires time Ω(√εp/n)

App: Short sigs without RO [BB’04]

Setup: x,y ←Zp ; PK = (g, gx, gy) ; SK = (x,y)

Sign(m, (x,y)): r ←Zp ; σ = (g1/(x+ry+m) , r)

Verify(m, σ=(h,r)): test e(h, gx⋅(gy)r⋅gm) = e(g,g)

Thm: Signature scheme is existentially unforgeable under

an n-chosen message attack, assuming (n+1)-SDH holds

Signature is as short as DSA, but has a complete proof
of security without random oracles.

Encryption
of Aj

Group sigs from SDH (RT1-TT2) [BBS ’04]

Setup(n): random a, b, c ← {1,…,p-1}

GPK ← (g, h, ha, hb, gc) ; GTK ← (a,b)

GSKj ← (xj , Aj = g1/(c+xj)) for j = 1,…, n

Sign(m, GSKj) = random d, e ← {1,…,p-1}

T1 = (ha)d ; T2 = (hb)e ; T3 = Aj⋅h
d+e

Proof ← ZKPKm (d, e, xj, dxj, exj) satisfying 5 relations.

sig = [T1, T2, T3, Proof] (9 elements)

Trace(σ, (a,b)) = T3 / (T1
a ⋅ T2

b) = Ai
Decryption

New group sig properties

Security:
− Full-Traceability: based on n-SDH
− CPA-Full-Privacy: based on Decision Linear.

Supports simple Type 1 revocation.

Length:
− ≈ same length as standard RSA signature.
− In practice ≤ 200 bytes (!) for 1024-bit security.

Revocation (Type 1)

Recall GPK ← (g, h, ha, hb, gc)

To revoke GSK1 = (x1 , A1 = g1/(c+x1)) do:

− Publish GSK1 in the clear.

− GPKnew ← (A1, h, ha, hb, A1
c)

− GSKi,new ← (xi , A1
1/(c+xi))

Main point: all unrevoked users can compute GSKi,new .

− Revoked user can no longer issue sigs (under SDH).

Conclusions

Lots of group signature models.
− Three tracing models. Three revocation models.
− Use most efficient system that meets your needs …

New constructions:
− Short group signatures (same as std. RSA sigs).
− Flexible: can be adapted to all trace/revoke models.

Open problems:
− Efficient group sigs (RT0-TT2) without random oracles.
− Efficient CCA-full-privacy with/without random oracles.

