
Broadcast Encryption

Krishnaram Kenthapadi

November 11, 2003

Introduction

Our system consists of a center and a set, U of n users. The center provides keys to the users when
they join the system. Later on, the center wants to broadcast an encrypted message (such as the
password to view “Matrix”) which can be deciphered only by a dynamically changing privileged
subset of users, T , i.e., the non-privileged users should not be able to learn the message. To achieve
this, the members of T should be able to agree on a common secret key, based only on the keys
present with each member and the broadcasts of the center.

One approach is for the center to give every user a key and broadcast an individually encrypted
message |T | times corresponding to each privileged user. Another approach is to provide every
possible subset of users with a key (give each user the keys corresponding to the subsets it belongs
to). The former requires a very long transmission whereas the latter requires each user to store
exponentially many keys. Fiat and Naor [1] describe schemes that are efficient in both these
measures and are also computationally efficient.

A broadcast scheme is resilient to a set of users S if for every subset T that is disjoint from S,
no eavesdropper that has all the secrets of S, can obtain “knowledge” about the secret common to
T . We could either consider the information-theoretic or the computational definition of security.
The scheme is k − resilient if it is resilient to any set S ⊂ U of size k.

Basic Zero Message Scheme

In zero message schemes, the members of the privileged set, T can agree upon a common key
without any broadcasts from the center, provided each member knows the set T itself. A simple
k−resilient scheme is as follows: For every set B ⊂ U, 0 ≤ |B| ≤ k, define a (fixed-length bit string)
key KB and give KB to every user x ∈ U \ B. Thus every user x gets O(nk) keys corresponding
to all subsets of size at most k, it is not a part of. The common key for a privileged set T is the
XOR of all keys KB, B ⊂ U \T . Any colluding set S (|S| ≤ k) will not have the key, KS and hence
cannot generate the common key for any disjoint set T .

A 1-Resilient Scheme using Pseudorandom Generators (PRG)

The above method provides a 1−resilient scheme in which each user stores n keys. We can reduce
this to log n keys per user if the keys are psuedorandomly generated. Let f : {0, 1}l 7→ {0, 1}2l be
a pseudorandom generator (known to everyone). Associate the users with the leaves of a balanced
binary tree. The root is associated with a seed, s ∈ {0, 1}l. We associate the first l bits of f(s)

1

with left child of root and the last l bits with the right child and proceed recursively. Each leaf
(user) x should get keys corresponding to all singleton sets except itself. We delete the nodes along
the path from x to the root and provide the keys of the siblings of these nodes to x. Hence x can
generate keys of all other leaf nodes, using the log n keys it has. Clearly two users can collude and
obtain the keys of all leaf nodes - hence this is not 2− resilient.

A 1-Resilient Scheme using RSA Conjecture

The center picks a hard-to-factor composite N = P.Q where P and Q are primes and chooses a
secret element, g ∈ {1, 2, . . . , N − 1} of high order. It also chooses mutually coprime numbers
pi, 1 ≤ i ≤ n and gives user i the key, gi = gpi mod N (The (i, pi) tuples are known to all users).
The common key for a privileged set T is gT = g

∏
i∈T

pi mod N . Each user i ∈ T computes gT as

g

∏
j∈T\{i} pj

i mod N . If some user j 6∈ T can compute gT , then we can prove that it can also obtain
the secret value, g. Thus, assuming the hardness of root extraction modulo composite (i.e., getting
g given r and gr mod N), we get a 1− resilient scheme with only one key per user.

Basic scheme Using PRG Using RSA conjecture
Keys per user n log n 1
Assumption None 1-way functions exist RSA is 1-way function

(weaker) (stronger)
Security Information theoretic Computational Neither

Comparison of 1− resilient schemes

k-Resilient Schemes

Any of these 1− resilient schemes can be used as a building block to obtain k− resilient schemes.
The center wants to send a secret key, M to a privileged set of users. The idea is to use a perfect
family of hash functions and send a “share” of the secret, M , corresponding to each hash function.
Each share is in turn broadcast with different encryptions. The privileged users can decrypt these
messages as they are encrypted using the common keys from the independent 1−resilient schemes.
This is done in such a way that any colluding set of at most k users cannot obtain at least one of
the shares (corresponding to the function which is perfect for this set) and no information about
M is revealed if we miss even one of the shares.

These are not zero-message schemes. An open problem is to consider lower bounds:

• Can we obtain zero-message k−resilience using less than O(nk) keys per user? In particular,
can we get zero-message 2 − resilience using o(n2) keys per user? (As the keys need to be
distributed initially in the database version of the problem (see below), lesser number of keys
per user is desirable.)

Database Problems

Suppose we have a single attribute database, with an access control list (ACL) for each row. The
database can be thought of as a set,S of n elements, which are encrypted and stored. There are

2

m users who want to access some elements of this set (m << n). For each element sj , ACLj is
the set of users who should be able to access sj . Thus we could use a zero-message 1 − resilient
broadcast encryption scheme and encrypt sj using the common key of ACLj . As the common key
of ACLj is the XOR of the keys singleton sets, user revocation can be done in constant time: when
some user i is removed from ACLj , every other user in ACLj can XOR the current common key
and the key of the singleton set {i} to agree on a new common key. There are two problems with
this solution:

• This requires a table of very large size, O(mn) to store the ACL’s (as we have n rows, each
with an encrypted item and an access control list). Can we trade-off user revocation time for
space?

• The item sj needs to be reencrypted every time ACLj is modified. This is not desirable
when the item itself is very large, say, a huge video file. On the other hand, if we encrypt sj

with a static key, ki and encrypt and store ki with the common key of ACLj , user revocation
cannot be done. Another approach is not to treat the encryption as a black box - as the
new common key is obtained by modifying the old one, can we do efficient “incremental”
encryption without sacrificing security?

Thus we want to apply broadcast encryption ideas to the above database problem, requiring only
1-resilience but with efficiency and the ability to modify user access lists online.

We can generalize to higher dimensions. Suppose the database has n1 rows and n2 columns. The
users should be able to access only entries in some rectangles. We could achieve this by associating
keys with every row and column and encrypting the (i, j)th entry by the key for row i followed
by the key for column j. The user who can access a l1 ∗ l2 rectangle is given l1 + l2 keys of the
corresponding rows and columns. When the user has to lose access to say, a row i, the key for row i
has to be changed and hence all entries in row i have to be reencrypted. Instead, we may associate
keys with each entry in the table (resulting in n1n2 keys), making the revocation faster.

References

[1] Amos Fiat and Moni Naor. Broadcast encryption. In
Advances in Cryptology – CRYPTO’93, LNCS 773, pages 480–491. Springer-Verlag, 1994.
http://citeseer.nj.nec.com/fiat94broadcast.html

3

