
STREAM: The Stanford Stream Data Manager

The STREAM Group
�

Stanford University
http://www-db.stanford.edu/stream

Abstract

The STREAM project at Stanford is developing a general-purpose system for processing continuous
queries over multiple continuous data streams and stored relations. It is designed to handle high-volume
and bursty data streams with large numbers of complex continuous queries. We describe the status of
the system as of early 2003 and outline our ongoing research directions.

1 Introduction

The STanford stREam datA Manager (STREAM) project at Stanford is developing a general-purpose Data Stream
Management System (DSMS) for processing continuous queries over multiple continuous data streams and stored
relations. The following two fundamental differences between a DSMS and a traditional DBMS have motivated
us to design and build a DSMS from scratch:

1. A DSMS must handle multiple continuous, high-volume, and possibly time-varying data streams in addi-
tional to managing traditional stored relations.

2. Due to the continuous nature of data streams, a DSMS needs to support long-running continuous queries,
producing answers in a continuous and timely fashion.

A high-level view of STREAM is shown in Figure 1. On the left are the incoming Input Streams, which
produce data indefinitely and drive query processing. Processing of continuous queries typically requires in-
termediate state, which we denote as Scratch Store in the figure. This state could be stored and accessed in
memory or on disk. Although we are concerned primarily with the online processing of continuous queries, in
many applications stream data also may be copied to an Archive, for preservation and possible offline processing
of expensive analysis or mining queries. Across the top of the figure we see that users or applications register
Continuous Queries, which remain active in the system until they are explicitly deregistered. Results of contin-
uous queries are generally transmitted as output data streams, but they could also be relational results that are
updated over time (similar to materialized views).

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�

Active members as of March 2003: A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava,
D. Thomas, R. Varma, J. Widom. This work was supported by NSF Grants IIS-0118173 and IIS-9817799, by Stanford Graduate
Fellowships from 3Com, Rambus, and Sequoia Capital, by a Siebel Scholarship, and by support from the Okawa Foundation, Microsoft,
Stanford Networking Research Center, and Veritas. Nishizawa is visiting Stanford from Hitachi, Ltd.

1

Figure 1: Overview of STREAM

Currently STREAM offers a Web system interface through direct HTTP, and we are planning to expose the
system as a Web service through SOAP. Thus, remote applications can be written in any language and on any
platform. Applications can register queries and receive the results of a query as a streaming HTTP response
in XML. To allow interactive use of the system, we have developed a Web-based GUI as an alternative way to
register queries and view results, and we provide an interactive interface for visualizing and modifying system
behavior (see Section 4).

In Sections 2 (Query Language and Processing), 3 (Operator Scheduling), and 4 (User Interface) we describe
the most important components of STREAM. In Section 5 we outline our current research directions. Due to
space limitations this paper does not include a section dedicated to related work. We refer the reader to our
recent survey paper [BBD

�
02], which provides extensive coverage of related work.

2 Query Language and Processing

We first describe the query language and semantics for continuous queries supported by STREAM. The latter
half of this section describes STREAM’s query processing architecture.

2.1 Query Language and Semantics

We have designed an abstract semantics and a concrete declarative query language for continuous queries over
data streams and relations. We model a stream as an unbounded, append-only bag of

�
tuple, timestamp � pairs,

and a relation as a time-varying bag of tuples supporting updates and deletions as well as insertions. Our seman-
tics for continuous queries over streams and relations leverages well-understood relational semantics. Streams
are converted into relations using special windowing operators; transformations on relations are performed using
standard relational operators; then the transformed relational data is (optionally) converted back into a streamed
answer. This semantics relies on three abstract building blocks:

1. A relational query language, which we can view abstractly as a set of relation-to-relation operators.

2. A window specification language used to extract tuples from streams, which we can view as a set of
stream-to-relation operators. In theory these operators need not have anything to do with “windows,” but

2

Window Specification

Relational Query

Streams Relations

Relation−to−Stream
Operators

 Language

Language

Figure 2: Mappings used in abstract semantics

in practice windowing is the most common way of producing bounded sets of tuples from unbounded
streams [BBD

�
02].

3. A set of relation-to-stream operators.

The interaction among these three building blocks is depicted in Figure 2.
We have developed a concrete declarative query language, CQL (for Continuous Query Language), which

instantiates our abstract semantics. Our language uses SQL as its relational query language, its window specifi-
cation language is derived from SQL-99, and it includes three relation-to-stream operators. The CQL language
also supports syntactic shortcuts and defaults for convenient and intuitive query formulation. The complete
specification of our query semantics and CQL is provided in an earlier paper [ABW02]. The interested reader
is referred to our Stream Query Repository [SQR], which contains queries from many realistic stream applica-
tions, including a large number and variety of queries expressed in CQL. A significant fraction of CQL has been
implemented to date, as described in the next section.

2.2 Query Processing

When a continuous query specified in CQL is registered with STREAM, it is compiled into a query plan. The
query plan is merged with existing query plans whenever possible, in order to share computation and memory.
Alternatively, the structure of query plans can be specified explicitly using XML. A query plan in our system
runs continuously and is composed of three different types of components:

1. Query operators correspond to the three types of operators in our abstract semantics (Section 2.1). Each
operator reads tuples from a set of input queues, processes the tuples based on its semantics, and writes
its output tuples into an output queue.

2. Inter-operator queues are used to buffer the output of one operator that is passed as input to one or more
other operators. Incoming stream tuples and relation updates are placed in input queues feeding leaf
operators.

3. Synopses maintain run-time state associated with operators.

STREAM supports the standard relational operators (including aggregation and duplicate elimination), window
operators that compute time-based, tuple-based, and partitioned windows over streams [ABW02], three opera-
tors that convert relations into streams, and sampling operators for approximate query answering. Note that the
queues and synopses for the active query plans in the system comprise the Scratch Store depicted in Figure 1.

A synopsis stores intermediate state at some operator in a running query plan, as needed for future evaluation
of that operator. For example, a sliding-window join operator [KNV03] must have access to all the tuples that are

3

S3 S

S1 S2

S

Q Q1 2

q

q

q q

q

q
1 2

3 4

65

JoinMax

SW SW

R S

54

1 2

Figure 3: STREAM query plans

part of the current window on each of its input streams, so we maintain one sliding-window synopsis (typically a
hash table) for each of these streams. On the other hand, simple filter operators, such as selection and duplicate-
preserving projection, do not require a synopsis since they do not need to maintain state. The most common use
of a synopsis in our system is to materialize a relation or a view (e.g., a sliding window). Synopses can also be
used to store a summary of the tuples in a stream or a relation for approximate query answering. For this reason
we have implemented reservoir samples [Vit85] over streams, and we will soon add Bloom filters [MW

�
03].

Figure 3 illustrates plans for two queries, ��� and ��� , over input streams � and � . Query ��� is a windowed-
aggregate query: it maintains the maximum value of attribute �	��
 over a sliding window on stream � . Query
��� is a sliding-window join query over streams � and � . Together the plans contain four operators SW � , SW � ,
Max, and Join, five synopses �� – ��� , and six queues ��� – ��� . SW � is a sliding-window operator that reads stream
� ’s tuples from queue ��� , updates the sliding-window synopsis �� , and outputs the inserts and deletes to this
sliding window into queue ��� . Thus, queue ��� represents stream � , while queue ��� represents the relation that is
the sliding-window on stream � . Similarly, SW � processes stream � ’s tuples from � � , updating synopsis � � and
queue ��� . The Max operator maintains the maximum value of �	��
 incrementally over the window on � , using
the inserts and deletes from the window maintained by SW � . Whenever the current maximum value expires
from the window, Max will potentially need to access the entire window to compute the new maximum value.
Thus, Max must materialize this window in its synopsis ��� . However, since ��� is simply a time-shifted version
of ��� , we can share the data store between �� and ��� , as indicated by the dotted arrow from ��� to ��� . Similarly,
the sliding-window synopsis ��� maintained by the join operator Join can be shared with ��� and ��� , and ���
can be shared with � � . Also, queue � � is shared by Max and Join, effectively sharing the window-computation
subplan between queries ��� and ��� .

The Aurora system [CCC
�

02] supports shared queues, used to share storage for sliding windows on streams.
Our system goes a step further in synopsis-sharing, including the ability to share the storage and maintenance
overhead for indexes over the synopses as well. For example, if Max in Figure 3 computed Group By �	��� ,
Max �	��
 , and Join used the join predicate �	��� �!����� , then it would be useful to maintain a hash-index over
�	��� in synopsis ��� which both Max and Join could use. We currently support shared windows over streams
where all the window specifications need not be the same, and shared materialized views, which are effectively
common subexpressions in our query plans [CDTW00]. We use novel techniques to eliminate from synopses
tuples that will not be accessed in the future, for example using reasoning based on constraints on the input

4

streams [BW02].
Execution of query operators is controlled by a global scheduler, discussed next in Section 3. The operators

have been implemented in such a way that they make no assumptions about the scheduling policy, giving the
scheduler complete flexibility to adapt its scheduling strategy to the query workload and input stream character-
istics.

3 Operator Scheduling

The execution of query plans is controlled by a global scheduler running in the same thread as all the operators
in the system. (The I/O operations are handled by a separate thread.) Each time the scheduler is invoked, it
selects an operator to execute and calls a specific procedure defined for that operator, passing as a parameter the
maximum amount of time that the operator should run before returning control to the scheduler. The operator
may return earlier if its input queues become empty.

The goals of a scheduler in a continuous query system are somewhat different than in a traditional DBMS.
Some traditional scheduling objectives, such as minimizing run-time resource consumption and maximizing
throughput, are applicable in the context of continuous queries, whereas other objectives, such as minimizing
query response time, are not directly relevant in a continuous query setting, though they may have relevant
counterparts (e.g., minimizing average latency of results). One objective that takes on unusual importance when
processing data streams is careful management of run-time resources such as memory. Memory management
is a particular challenge when processing streams because many real data streams are irregular in their rate of
arrival, exhibiting burstiness and variation of data arrival rate over time. This phenomenon has been observed in
networking [FP95], web-page access patterns, e-mail messages [Kle02], and elsewhere. When processing high-
volume and bursty data streams, temporary bursts of data arrival are usually buffered, and this backlog of tuples
is processed during periods of light load. However, it is important for the stream system to minimize the memory
required for backlog buffering. Otherwise, total memory usage can exceed the available physical memory during
periods of heavy load, causing the system to page to disk and limiting system throughput. To address this
problem, we have developed an operator scheduling strategy that minimizes the memory requirement for backlog
buffering [BBDM03]. This strategy, called Chain scheduling, is near-optimal in minimizing run-time memory
usage for single-stream queries involving selections, projections, and foreign-key joins with stored relations.
Chain scheduling also performs well for queries with sliding-window joins over multiple streams, and multiple
queries of the above types.

The basic idea in Chain scheduling is to break up query plans into disjoint chains of consecutive operators
based on their effectiveness in reducing run-time memory usage, favoring operators that “consume” a large
number of tuples per time unit and “produce” few output tuples. This metric also determines the scheduling
priority of each operator chain. Chain scheduling decisions are made by picking the operator chain with highest
priority among those that have operators that are ready to execute and scheduling the first ready operator in
that chain. Complete details of Chain, proofs of its near-optimality, and experimental results demonstrating the
benefits of Chain with respect to other scheduling strategies, are provided in an earlier paper [BBDM03].

While Chain achieves run-time memory minimization, it may suffer from starvation and poor response
times during bursts. As ongoing work, we are considering how to adapt our strategy to take into account these
additional objectives.

4 User Interface

We are developing a comprehensive interactive interface for STREAM users, system administrators, and system
developers to visualize and modify query plans as well as query-specific and system-wide resource allocation
while the system is in operation.

5

4.1 Query Plan Execution

STREAM will provide a graphical interface to visualize the execution of any registered continuous query. Query
plans are implemented as networks of entities, each of which is an operator, a queue, or a synopsis. The query
plan execution visualizer will provide the following features.

1. View the structure of the plan and its component entities.

2. View specific attributes of an entity, e.g., the amount of memory being used by a synopsis in the plan.

3. View data moving through the plan, e.g., tuples entering and leaving inter-operator queues, and synopsis
contents growing and shrinking as operators execute. Depending on the scope of activity individual tuples
or tuple counts can be visualized.

4.2 Global System Behavior

‘The query execution visualizer described in the previous section is useful for visualizing the execution and
resource utilization of a single query, or a small number of queries that may share plan components. However, a
system administrator or developer might want to obtain a more global picture of DSMS behavior. The STREAM
system will provide an interface to visualize system-wide query execution and resource utilization information.
The supported features include:

1. View the entire set of query plans in the system, with the level of detail dependent on the number and size
of plans.

2. View the fraction of memory used by each query in the system, or in more detail by each queue and each
synopsis.

3. View the fraction of processor time consumed by each query in the system.

4.3 Controlling System Behavior

Visualizing query-specific and system-wide execution and resource allocation information is important for sys-
tem administrators and developers to understand and tune the performance of a DSMS running long-lived contin-
uous queries. A sophisticated DSMS should adapt automatically to changing stream characteristics and changing
query load, but it is still useful for “power users” and certainly useful for system developers to have the capability
to control certain aspects of system behavior. STREAM does or will support the following features:

1. Run-time modification of memory allocation, e.g., increasing the memory allocated to one synopsis while
decreasing memory for another.

2. Run-time modification of plan structure, e.g., changing the order of synopsis joins in a query over multiple
streams, or changing the type of synopsis used by a join operator.

3. Run-time modification of the scheduling policy, choosing among several alternative policies.

5 Directions of Ongoing Research

This section outlines the problems that we are addressing currently in the STREAM project, in addition to
implementing the basic prototype as described above. These problems fall broadly into the areas of efficient
query processing algorithms, cost-based optimization and resource allocation, operator scheduling, graceful
degradation under overload, and distributed stream processing.

6

Efficient query processing: Our system needs efficient query processing algorithms to handle high-volume
data streams and large numbers of complex continuous queries. Some of the issues we are addressing in this
area include techniques for sharing computation and memory aggressively among query plans, algorithms for
multi-way sliding-window joins over streams, tradeoffs between incremental computation and recomputation for
different types of continuous queries, and strategies for processing continuous queries efficiently while ensuring
correctness in the absence of time-synchronization among stream sources and the DSMS.

Cost-based optimization and resource allocation: Although we have implemented support for a significant
fraction of CQL in STREAM to date, our query plan generator is fairly naive and uses hard-coded heuristics to
generate query plans. We are now moving towards one-time and dynamic cost-based query optimization of CQL
queries. Since CQL uses SQL as its relational query language, we can leverage most of the one-time optimiza-
tion techniques used in traditional relational DBMSs. Our unique optimization techniques include relocating
window operators in query plans, exploiting stream constraints to reduce window sizes without affecting result
correctness, and identifying opportunities for sharing computation (e.g., common subexpression computation,
index maintenance) and memory (synopses and queues). Apart from choosing plans shapes and operators, a
query optimizer must allocate resources such as memory within and across queries. One of the problems we are
addressing in this area is how to allocate resources to query plans so as to maximize result precision whenever
resource limitations force approximate query results. We are also exploring dynamic and adaptive approaches
to query processing and resource allocation. Our adaptive query processing is less fine-grained than Eddies (as
used in the Telegraph project [CC

�
03]). Our approach relies on two interacting components: a monitor that cap-

tures properties of streams and system behavior, and an optimizer that can reconfigure query plans and resource
allocation as properties change over time.

Scheduling: As described in Section 3, the Chain scheduling strategy achieves run-time memory minimiza-
tion, but it may suffer from poor response times during bursts. As ongoing work, we are adapting Chain to
minimize total run-time memory usage for queries under the constraint that the latency of any query-result tuple
must not exceed a given threshold. Another planned extension needed for a complete scheduling strategy for a
DSMS is the intelligent handling of query workloads where synopses and queues do not all fit into the physical
memory available in the DSMS.

Graceful degradation under overload: There could be large intervals of time when input stream arrival rates
exceed the maximum rate at which the DSMS can process its query workload over these streams. As shown
by the Aurora system [CCC

�
02], a general approach to handle such overload situations is load shedding. The

system load is reduced to manageable levels by dropping input tuples selectively so that the overall quality-of-
service given by the system degrades as little as possible [CCC

�
02]. Ongoing work in our project adopts a

similar approach, using sampling-based techniques to drop input tuples with the goal of minimizing the overall
weighted error in query results incurred during overload situations.

Distributed stream processing: A final important aspect of our long-term research agenda is to incorporate
distributed data stream processing techniques into the STREAM system. Data stream sources are frequently
geographically dispersed, and our experiments and simulations show that processing strategies that take this fact
into account can result in significant savings in computation and communication costs [OJW03, BO03]. We
plan to modify STREAM to function in a distributed environment, incorporating specialized distributed data
processing strategies.

7

References

[ABW02] A. Arasu, S. Babu, and J. Widom. An abstract semantics and concrete language for continuous
queries over streams and relations. Technical report, Stanford University Database Group, Novem-
ber 2002. Available at http://dbpubs.stanford.edu/pub/2002-57.

[BBD
�

02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. In Proc. of the 2002 ACM Symp. on Principles of Database Systems, pages 1–16, June
2002.

[BBDM03] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain: Operator scheduling for memory mini-
mization in data stream systems. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management
of Data, June 2003. (To appear).

[BO03] B. Babcock and C. Olston. Distributed top-k monitoring. In Proc. of the 2003 ACM SIGMOD Intl.
Conf. on Management of Data, June 2003. (To appear).

[BW02] S. Babu and J. Widom. Exploiting k-constraints to reduce memory overhead in continuous queries
over data streams. Technical report, Stanford University Database Group, November 2002. Avail-
able at http://dbpubs.stanford.edu/pub/2002-52.

[CC
�

03] S. Chandrasekaran, O. Cooper, et al. TelegraphCQ: Continuous dataflow processing for an uncertain
world. In Proc. First Biennial Conf. on Innovative Data Systems Research (CIDR), January 2003.

[CCC
�

02] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul,
and S. Zdonik. Monitoring streams–a new class of data management applications. In Proc. 28th
Intl. Conf. on Very Large Data Bases, August 2002.

[CDTW00] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for
internet databases. In Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data, pages
379–390, May 2000.

[FP95] S. Floyd and V. Paxson. Wide-area traffic: The failure of poisson modeling. IEEE/ACM Transac-
tions on Networking, 3(3):226–244, June 1995.

[Kle02] J. Kleinberg. Bursty and hierarchical structure in streams. In Proc. of the 2002 ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining, August 2002.

[KNV03] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window joins over unbounded streams. In Proc.
of the 2003 Intl. Conf. on Data Engineering, March 2003.

[MW
�

03] R. Motwani, J. Widom, et al. Query processing, approximation, and resource management in a data
stream management system. In Proc. First Biennial Conf. on Innovative Data Systems Research
(CIDR), January 2003.

[OJW03] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data
streams. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management of Data, June 2003. (To
appear).

[SQR] SQR – A Stream Query Repository. http://www-db.stanford.edu/stream/sqr.

[Vit85] J.S. Vitter. Random sampling with a reservoir. ACM Trans. on Mathematical Software, 11(1):37–
57, 1985.

8

