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Document Centric WebPeople Centric Web
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Recommendation Systems

•
 

Friend Recommendation
•

 
Application Recommendation

•
 

Community/Forum Recommendation
•

 
Ads Matching

•
 

Performance Requirements
–

 
Scalability, scalability, scalability
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Google Data Centers
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Outline
•

 
Emerging Applications
–

 
Social networks

–
 

Personalized Information retrieval
•

 
Key Subroutines for Mining Massive SNS
–

 
Clustering [ECML 08]

–
 

Frequent Itemset
 

Mining [Google Tech Report 08]

–
 

Combinational Collaborative Filtering [KDD 08]
•

 

with PLSA
•

 

with LDA

–
 

Support Vector Machines [NIPS 07]
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Clustering for SNS Analysis

•
 

Centrality
•

 
Degree Centrality

•
 

Closeness
•

 
Betweenness
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Spectral Clustering [A. Ng, M. Jordan]

•
 

Important subroutine in tasks of machine learning 
and data mining
–

 
Exploit pairwise similarity of data instances

–
 

More effective than traditional methods e.g., k-means
•

 
Key steps
–

 
Construct pairwise

 
similarity matrix

–
 

Compute the Laplacian
 

matrix
–

 
Apply eigendecomposition

–
 

Perform
 

k-means
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Scalability Problem
•

 
Quadratic computation of nxn matrix

•
 

Approximation methods

Dense Matrix

Sparsification Nystrom Others

t-NN      ξ-neighborhood    … random      greedy   ….
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Sparsification vs. Sampling
•

 
Construct the dense 
similarity matrix S

•
 

Sparsify
 

S
•

 
Compute Laplacian

 matrix L 

•
 

Apply ARPACLK on L
•

 
Use k-means to 
cluster rows of V into k 
groups

•
 

Randomly sample l 
points, where l << n

•
 

Construct dense 
similarity matrix [A B]

 between l and n points
•

 
Normalize A and B to 
be Laplacian

 
form

•
 

R = A + A-1/2BBTA-1/2 ;  
R = U∑UT

•
 

k-means
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Single Machine

•
 

Nystrom
 

approximation by random sampling
–

 
Random sampling is least costly

–
 

Trade clustering quality for speed
•

 
Sparsification

 
with t-NN

–
 

Keep only t-NN of each instance
–

 
O(n^2) computation and storage
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Empirical Study
•

 
Dataset: RCV1 (Reuters Corpus Volume I)
–

 
A filtered collection of 193,944 documents in103 
categories

•
 

Photo set: PicasaWeb
–

 
637,137 photos

•
 

Experiments
–

 
Clustering quality vs. computational time

•

 

Measure the similarity between CAT and CLS 
•

 

Normalized Mutual Information (NMI)

–
 

Scalability
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NMI Comparison (on RCV1)

Nystrom method Sparse matrix approximation
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Speedup Test on RCV1
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Speedup Test on 637,137 Photos
•

 
K = 1000 clusters

•
 

Achiever linear speedup
 

when using 32 machines, after 
that, sub-linear speedup because of increasing 
communication and sync time
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Sparsification vs. Sampling
Sparsification Nystrom, random 

sampling

Information Full n x n 
similarity scores

None

Pre-processing 
Complexity 
(bottleneck)

O(n2) O(nl), l << n

Effectiveness Good Not bad (Jitendra

 M., PAMI)
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Outline
•

 
Emerging Applications
–

 
Social networks

–
 

Personalized Information retrieval
•

 
Key Subroutines
–

 
Clustering

–
 

Frequent Itemset
 

Mining (FIM)
–

 
Combinational Collaborative Filtering

•

 

with PLSA
•

 

with LDA

–
 

Support Vector Machines
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Given a matrix that 
“encodes” data

Many applications 
(collaborative filtering):

• User
 

–
 

Community

• User –
 

User

• Ads –
 

User

• Ads –
 

Community

• etc.

U
se

rs

CommunitiesCollaborative Filtering
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FIM-based Recommendation
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FIM Preliminaries
•

 
Observation 1: If an item A is not frequent, any pattern 
contains A won’t be frequent [R. Agrawal]

use a threshold to eliminate infrequent items 
{a}  {a,b}

•
 

Observation 2: Patterns containing A are subsets of (or 
found from) transactions containing A [J. Han]

divide-and-conquer: select transactions containing A to 
form a conditional database (CDB), and find patterns 
containing A from that conditional database
{a, b}, {a, c}, {a}  {a, b, c} 

•
 

Observation 3: To prevent the same pattern from being 
found in multiple CDBs, all itemsets are sorted by the same 
manner (e.g., by descending support)
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Preprocessing

p: 3 f c a b m

f b

c b p

f c a m p

o: 2
d: 1
e: 1
g: 1
h: 1
i: 1
k: 1
l : 1
n: 1

f a c d g i m p

a b c f l m o

b f h j o

b c k s p

a f c e l p m n

f: 4
c: 4
a: 3
b: 3
m: 3

f c a m p

•

 

According to 
Observation 1, we 
count the support of 
each item by 
scanning the 
database, and 
eliminate those 
infrequent items 
from the 
transactions.

•

 

According to 
Observation 3, we 
sort items in each 
transaction by the 
order of descending 
support value.
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Parallel Projection
•

 
According to Observation 2, we construct CDB of item A; 
then from this CDB, we find those patterns containing A

•
 

How to construct the CDB of A? 
–

 

If a transaction contains A, this transaction should appear in the 
CDB of A

–

 

Given a transaction {B, A, C}, it should appear in the CDB of A,

 
the CDB of B, and the CDB of C

•
 

However, this leads to duplicates
–

 

Suppose {B,A,C} is a frequent pattern, it will be found three times 
---

 

from the CDBs

 

of A, B and C respectively
•

 
Solution: using the order of items:
–

 

sort {B,A,C} by the order of items <A,B,C>
–

 

Put <> into the CDB of A
–

 

Put <A> into the CDB of B
–

 

Put <A,B> into the CDB of C
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Example of Projection

b:

{ f c / f c / f c }

{ f c a / f / c }

{ f c a / f c a / f c a b }

{ f c a m / f c a m / c b }f c a m p

f c a b m

f b

c b p

f c a m p c:

a:

m:

p:

{ f / f / f }

Example of Projection of a database into CDBs.
Left:   sorted transactions; 
Right: conditional databases of frequent items
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Example of Projection

b:

{ f c / f c / f c }
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p:
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Recursive Projections
•

 

Recursive projection 
form a search tree

•

 

Each node is a CDB
•

 

Using the order of 
items to prevent 
duplicated CDBs.

•

 

Size(D|ac)=supp(ac)
•

 

Each level of breath-

 
first search of the 
tree can be done by 
a MapReduce

 
iteration.

•

 

Once a CDB is small 
enough to fit in 
memory, we can 
invoke FP-growth to 
mine this CDB, and 
no more growth of 
the sub-tree.

c

MapReduce
Iteration 3Iteration 1

c

a

c

b

c

b

MapReduce
Iteration 2

MapReduce

D|ab D|abc

D|ac

D|bcD|b

D|a

D|c

D
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MapReduce

•

 

Logically, the 
input 
transaction 
database is in 
one file, but 
physically 
distributed 
across many 
computers.

•

 

Logically, the 
output pattern 
database is in 
one file, but 
physically 
distributed 
across many 
computers.
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key:   value
(conditional transactions)
key: value

Map inputs
(transactions)

a f c e l p m n

b c k s p

b f h j o

a b c f l m o

f a c d g i m p

Sorted transactions
(with infrequent
  items eliminated)

f c a m p

f b

c b p

f c a b m

f c a m p

p c : 3
p : 3

{ f c a m / f c a m / c b }p:

m f : 3
m c : 3
m a : 3
m f c : 3
m f a : 3
m c a : 3
m f c a : 3

b: b : 3{ f c a / f / c }

{ f c / f c / f c }a: a : 3
a f : 3
a c : 3
a f c : 3

c : 3
c f : 3{ f / f / f }c:

{ f c a / f c a / f c a b }m:

Reduce outputs
(patterns and supports)

p:
m:
a:
c:

f c a m
f c a
fc
f

b: f

p: c b

m:

b:
a: 
c:

f c a b

f c a
f c
f

b:
p: 
m:
a:
c:

c
f c a m
f c a
f c
f

key="": value

Reduce inputs
(conditional databases)
key:   value

Map outputs

Projection using MapReduce
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Outline
•

 
Emerging Applications
–

 
Social networks

–
 

Personalized Information retrieval
•

 
Key Subroutines
–

 
Clustering

–
 

Frequent Itemset
 

Mining (FIM)
–

 
Combinational Collaborative Filtering

•

 

with PLSA
•

 

with LDA

–
 

Support Vector Machines
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Notations
•

 
Given a collection of co-occurrence data
–

 

Community: C = {c1

 

, c2

 

, …, cN

 

}
–

 

User: U = {u1

 

, u2

 

, …, uM

 

}
–

 

Description: D = {d1

 

, d2

 

, …, dV

 

}
–

 

Latent aspect: Z = {z1

 

, z2

 

, …, zK

 

}

•
 

Models
–

 

Baseline models
•

 

Community-User (C-U) model
•

 

Community-Description (C-D) model
–

 

CCF: Combinational Collaborative Filtering
•

 

Combines both baseline models
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Probabilistic Latent Semantic Analysis 
(PLSA) [Hoffman 1999; Hoffman 2004]

•
 

Document is viewed as a bag of words
•

 
A

 
latent semantic layer is constructed in 

between documents and words
•

 
P(w, d) = P(d) P(w|d) = P(d)∑z

 

P(w|z)P(z|d)

•
 

Probability delivers explicit meaning
–

 
P(w|w), P(d|d), P(d, w) 

•
 

Model learning via EM or Gibbs sampling

P(d) d wz

P(z|d) P(w|z)
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Example of Latent Analysis
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Baseline Models

QuickTime™ and a
 decompressor

are needed to see this picture.

QuickTime™ and a
 decompressor

are needed to see this picture.

Community-User (C-U) model Community-Description (C-D) model

Community is viewed as a bag of users
c and u are rendered conditionally 
independent by introducing z
Generative process, for each user u
1. A community c is chosen uniformly
2. A topic z is selected from P(z|c)
3. A user u is generated from P(u|z)

Community is viewed as a bag of words
c and d are rendered conditionally 
independent by introducing z
Generative process, for each word d
1. A community c is chosen uniformly
2. A topic z is selected from P(z|c)
3. A word d is generated from P(d|z)

QuickTime™ and a
 decompressor

are needed to see this picture.
QuickTime™ and a

 decompressor
are needed to see this picture.
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CCF Model [Chen, et. al. KDD 08]

Combinational Collaborative 
Filtering (CCF) model

CCF combines both baseline models

A community is viewed as
-

 

a bag of users

 

AND a bag of words

By adding C-U, CCF can perform 
personalized recommendation which C-D  
alone cannot

By adding C-D, CCF can perform better 
personalized recommendation than C-U 
alone, which may suffer from sparsity

Things CCF can do that C-U and C-D 
cannot

-

 

P(d|u), relate user to word
-

 

Useful for user targeting ads 
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Empirical Study
•

 
Orkut

 
Dataset

–

 

Collected in July, 2007
–

 

Two types of data were extracted
•

 

Community-user, community-description
–

 

312,385 users
–

 

109,987 communities
•

 
Machine farm
–

 

Up to 200 machines in Google datacenters
–

 

Each machine is configured with:
•

 

A CPU faster than 2GHz
•

 

Memory larger than 4GBytes
•

 
Evaluations
–

 

Community recommendation
–

 

Speedup
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Community Recommendation

•
 

Evaluation Method
–

 
Leave-one-out: randomly delete one community for 
each user

–
 

Whether a removed community can be recovered
•

 
Evaluation metric
–

 
Precision and Recall
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CCF outperforms C-U The more information, the 
higher accuracy

Results
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Gibbs Sampling MapRedue Speedup

•

 

The Orkut

 

dataset enjoys a linear speedup when the number of 
machines is up to 100

•

 

Reduces the training time from one day to less than 14 minutes
•

 

But, what makes the speedup slow down after 100 machines?
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Extensions
•

 
Expand CCF to incorporate more types 
of information

•
 

Replace PLSA with LDA

d

z

w
Nm

M

PLSA LDA

θ

z

w
Nm

M

α

βϕ

K
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…Extensions

•
 

Fusing more information sources
•

 
Considering time dimension

•
 

Incremental learning
•

 
Topic hierarchy

•
 

Etc.
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Outline
•

 
Emerging Applications
–

 
Social networks

–
 

Personalized Information retrieval
•

 
Key Subroutines
–

 
Clustering

–
 

Frequent Itemset
 

Mining (FIM)
–

 
Combinational Collaborative Filtering

•

 

with PLSA
•

 

with LDA

–
 

Support Vector Machines
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Personalized Search Example

•
 

Infer relevance through social networks

•
 

Query “fuji”
 

can return
–

 
Fuji mountain

–
 

Fuji apples
–

 
Fuji cameras
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SVM Bottlenecks
Time consuming –

 
1M dataset, 8 days

Memory consuming –
 

1M dataset, 10G

... ... ...
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Matrix Factorization Alternatives

exact

approximate
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PSVM [E. Chang, et al, NIPS 07]

•
 

Column-based ICF
–

 
Slower than row-based on single machine

–
 

Parallelizable on multiple machines
•

 
Changing IPM computation order to 
achieve parallelization
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Raw Data Matrix MultiplicationICF

Incremental
Data

Kernel Matrix

Incremental
Kernel Matrix

Incremental
ICF

Incremental
Matrix Multiplication

Incremental
Linear System Solving

Parallelized and Incremental SVM
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Raw Data Matrix MultiplicationICF

Incremental
Data

Kernel Matrix

Incremental
Kernel Matrix

Incremental
ICF

Incremental
Matrix Multiplication

Incremental
Linear System Solving

Parallelized and Incremental SVM
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Incomplete Cholesky Factorization (ICF)

≈ ×

n x n n x p p x n
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Raw Data Matrix MultiplicationICF

Incremental
Data

Kernel Matrix

Incremental
Kernel Matrix

Incremental
ICF

Incremental
Matrix Multiplication

Incremental
Linear System Solving

Parallelized and Incremental SVM
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Matrix Product

× =

p x n n x p p x p
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Speedup
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Overheads
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Summary
•

 
Have parallelized key subroutines for mining 
massive data sets
–

 
Spectral Clustering 

–
 

Frequent Itemset
 

Mining
–

 
Combinational Collaborative Filtering

•

 

with PLSA
•

 

with LDA
–

 
Support Vector Machines

•
 

Relevant papers
–

 
http://infolab.stanford.edu/~echang/

•
 

Open Source PSVM
–

 
http://code.google.com/p/psvm/

http://infolab.stanford.edu/~echang/
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Concluding Remarks
•

 
Google distributed computing infrastructure is 
cost effective

•
 

Timeliness can be as good as real-time
–

 
E.g., timely recommendation

•
 

An expensive and parallelizable algorithm can 
be a better choice than a fast but non-

 parallelizable one
–

 
Column-based ICF over row-based in PSVM

–
 

t-NN over Nystrom
 

in Spectral Clustering
•

 
Relevant Information critical
–

 
Information fusion of CCF

–
 

Sparsification
 

of Spectral Clustering
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