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Microscopic level job stream data obtained in a 
production environment by an event-driven software 
probe is used to drive a model of a multiprogramming 
computer system. The CPU scheduling algorithm of the 
model is systematically varied. This technique, called 
trace-driven modeling, provides an accurate replica of a 
production environment for the testing of variations in 
the system. At the same time alterations in scheduling 
methods can be easily carried out in a controlled way 
with cause and effects relationships being isolated. The 
scheduling methods tested included the best possible and 
worst possible methods, the traditional methods of 
multiprogramming theory, round-robin, first-come- 
first-served, etc., and dynamic predictors. The relative 
and absolute performances of these scheduling methods 
are given. It is concluded that a successful CPU 
scheduling method must be preemptive and must prevent 
a given job from holding the CPU for too long a period. 
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Introduction 

The primary purpose of a mult iprogrammed operat- 
ing system is to bring into balance the demand for 
processing and I /o  facilities presented by the user job 
load, so that computing facilities and I/O facilities are 
utilized to the ultimate degree in order to maximize 
throughput.  Efforts to bring about  a balance between 
demand for compute resources and I /o  resources can 
be approached f rom a job scheduling (external) view- 
point, where efforts are made to load into the working 
memory  a set of jobs which include both compute 
bound and I/O bound jobs. It is, however, well known 
that the character of  resource demand of a given job 
may fluctuate dramatically over short-time intervals 
of  operation. It is therefore necessary to consider in- 
ternal processor, or cpu  scheduling, and I/O facility 
scheduling if utilization of both classes of resources 
is to be efficient. Several papers [1, 2, 3, 4] have sug- 
gested that  dynamic calculations of internal priorities 
for scheduling the cPu for mul t iprogrammed jobs will 
yield a significant improvement  in throughput  and 
cPU efficiency. All of these scheduling methods at tempt 
to give higher priorities to I /o  bound jobs than to cpu  
bound jobs, and to assume that the past performance 
of a job, either its immediate past or an average of its 
history, is a valid indicator of  future performance.  The 
basic concept of all of  these papers is that priority of  a 
given process for cpu  service should be determined 
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by the probability that the process will generate an 
I/O request in the next period of cPu activity. Each 
previously studied case, however, implicitly or ex- 
plicitly involved alterations in the scheduling policy 
or other significant changes in the system in addition 
to dynamic assignment of cau  priority. None of the 
previous workers made any systematic effort to com- 
pare the various possible cPu scheduling methods. All 
of the previously reported work was done by altering 
the scheduling policy in an actual operating system. 
In these circumstances in order to attempt valid com- 
parison of any great number of algorithms, a great deal 
of labor would be necessary. 

This paper compares various cPu scheduling policies 
under circumstances such as: (1) the effects of the 
scheduling algorithms are isolated and valid compari- 
sons [5] between different policies can be made, and 
(2) changes in the cPu scheduling methods become 
very easy to make. We use a trace-driven model, TOM, 
as defined by Cheng [6] as the test-bed for comparison 
of  the scheduling methods. (See also Pinkerton [7].) 
The data to drive the TOM was obtained in a separate 
study [8] where a software probe recorded the activity 
of the UT Austin CDC 6600 system at the minimum 
quantum level of system activity. This data, including 
such factors as cvu burst times and I/O service times, 
was used to produce a job stream whose demands for 
cpu and I/O service are known at the microscopic level. 
This job stream is then run through the model system 
with a set of cPu scheduling algorithms. In addition to 
considering several possible dynamic predictors for 
cpu scheduling we use the standard algorithms of 
multiprogramming theory, round robin, first-come- 
first-served, etc., as well as theoretic "bes t"  and "wors t "  
scheduling policies. Several surprising results are ob- 
tained. In particular, it becomes clear that essential 
factors in a successful scheduling algorithm are a pre- 
emptive mechanism and a bound on the cvu  burst 
time, either directly by imposing an upper bound or 
indirectly via a round-robin method. 

Previous Work  

Most of the previous experimental work published 
in this problem area has been concerned with the use 
of dynamic predictors. Stevens [1] used the running 
average of compute time to I/O time charged to each 
job as the measure of internal priority for cvc  schedul- 
ing. He observed a doubling of throughput and an 
increase of 18 percent in cPv utilization. However, a 
number of other changes were made in the system at 
the same time. It is thus difficult to totally isolate 
effectiveness of the dynamic scheduling in this case. 
Marshall [2] considered two schemes. One was a 
reward-penalize scheme in which, if a job requested 
I /o  before the termination of a system quantum of 
time, it received a longer quantum of activity the next 
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time it was run, whereas, if it failed to generate an 
I /o  activity in a minimum system quantum, it was 
penalized and given a smaller quantum the next time 
it was run. This did not turn out to be a particularly 
significant approach. Marshall then went to a cumula- 
tive ratio as a predictor. He used the ratio of total 
wait time over wait time plus cPu time as an internal 
priority measure. This was found to be an effective 
procedure which increased productivity by a signifi- 
cant amount  in actual operation. Marshall, however, 
imposed a maximum burst time of 5 sec by forcing a 
rescheduling of internal priorities at this interval. We 
shall see later that this should probably have a very 
significant effect on the performance metrics. Wulf 
[3] has studied dynamic internal scheduling and has 
implemented a moving average procedure on the 
Burrough's B5500. He found that this modification in 
scheduling together with changing the job mix produced 
a 25 percent increase in processor utilization. However, 
it is not clear what improvement is due to the dynamic 
priority adjustment. Ryder [4] implemented a scheme 
basically utilizing the information gathered in the last 
time quantum of job operation to predict the future 
behavior. Ryder's algorithm was essentially heuristic 
and had six factors, including a reward-penalize factor 
and an upper-bound on cPu burst time. It is difficult to 
isolate from his algorithm the key factors which yield 
improvement in cPu utilization and throughput.  Ryder 
also made some effort to correlate his results with 
cPu-I/O overlap, a subject which we will discuss in a 
subsequent paper. Baskett, Raike, and Browne [9] and 
Schwetman and Browne [10] have studied the use of 
round-robin procedures with varying time quantum 
size. 

The Trace-Driven Model 

The data used in this study was collected on a CDC 
6600 running under the UT-1 operating system by the 
use of an event-driven software probe [8]. The CDC 
6600 has 128 k words of central core memory, 4-6638 
disks, 12 x/o channels, and one half million words of 
extended core storage. The 6600 itself is an 11 computer 
complex consisting of a very fast central processor 
(cPu) and I0 peripheral processors, ppu. The Peus are 
primarily used for I/O and control functions. The 
UT-1 system under consideration designates one PPU 
as the monitor to coordinate all system activity. One 
ppo is used to drive the operator display console. Three 
other PPUS are dedicated to other tasks such as, driving 
the teletype system, driving the card readers, line 
printer, etc., and driving the high speed remote com- 
puters. The remaining 5 PPUS are available to perform 
transit system functions and user I/O. The 128 k words 
of central memory are allocated (by software) to seven 
or fewer control points which are virtual cpu's. Only 
one program at a time can be assigned to a control 
point, and a program is not a candidate for execution 
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T a b l e  I .  C o m p a r i s o n  o f  M o d e l  R e s u l t s  a n d  A c t u a l  R e s u l t s  

R U N  1 R U N  1 R U N  2 R U N  2 
M O D E L E D  M O D E L E D  

T i m e o f d a y  10:13:42 - -  20 :24 :16  - -  
Jobs started 547 - -  275 - -  
Jobs t o m -  552 - -  270 - -  

pleted 
Elapsed 4037.35 4048.47 2435.23 2434.26 

time* 
C P U  active 3639.49 3653.25 2318.06 2316.07 

time* 
Percent 90.15 90.24 95.19 95.15 

active* 
User  PPI  2271.15 2198.52 1254.71 1518.83 

idle time* 
Percent idle 56.27 54.30 51.56 62.39 

D E G R E E  O F  M U L T I P R O G R A M M I N G t  

Measured Control var Measured Control var 

Mean  5.436 5.436 5.915 5.915 
Standard .997 .997 .899 .899 

deviation 

* All times are expressed in seconds. 
All seven control point streams were used in the validation. 

in central memory unless it is assigned to a control 
point. The ux-1 system uses one control point for 
buffer space for all system I/O tasks. A second control 
point is used by the teletype network supervisor. This 
leaves five control points available for occupancy by 
user submitted jobs. All requests for the utilization of 
resources or for the initiation of new activity are 
handled by the monitor. The event-driven software 
probe is in the monitor. The probe records every re- 
quest in a small buffer in central memory and dumps 
this information on tape. A careful analysis [8] has 
shown that the software probe has virtually no effect 
on system activity. A more detailed description of the 
CDC 6600, the or-1 system, and the software probe 
can be found in Schwetman [8]. The empirical data 
used in this analysis was gathered on May 13, 1970. 
These tapes were selected for detailed analysis from a 
number of available tapes with highly similar char- 
acteristics. The system running time includes the 
initiation and completion of over 500 jobs for the first 
set of data and nearly 300 jobs for the second set of 
data. The two data sets reflect quite different external 
job mixes but extremely similar internal characteristics. 
This pattern is observed throughout the data sets ob- 
tained by Schwetman [8]. Two different runs are used 
to test the validity of our trace-driven model. The origi- 
nal data included all of the events requested and 
completed for seven control points and nine PPus 
(the dedicated monitor is not included) as one stream 
of data. It was convenient to consider only the most 

pertinent requests due to the enormous volume of the 
original data. The following information was extracted 
from the original data tape for each control point with 
millisecond accuracy. 
1. For  each I/O request (requests for system service 
are included in I/O requests): 

1.1 The name of the request, 
1.2 the cpu time since the job started (the cpu 
time is needed since the trr-I scheduler is RR), 
1.3 whether to give up the cPu or not. 

2. The cau  time the job ended. 
3. For  each ppu function: 

3.1 the name of the Ppu program (this corresponds 
to the name of the I /o  request), 
3.2 the time the vpu requested that the cpu be 
taken away from the control point, 
3.3 the time the Peu finished. 

The extracted information is in seven control point 
streams, one corresponding to each control point. 
The TDM will execute jobs taken from the seven streams 
and bring them into one executable stream again. 
The memory size required for each job was not recorded, 
but an analysis of the original data yields the mean and 
standard deviation of the degree of multiprogram- 
ming. This mean and standard deviation is used by the 
model to decide how many jobs should be running at 
one time. This control over average degree of multi- 
programming was used in lieu of explicit memory 
management. The number of jobs in the trace data 
appeared to be sufficient to insure reproducible behavior 
when the order of scheduling was varied. Further, 
there is only a secondary control on the effects of 
possible channel and equipment request conflicts. 
This control consists of the increased length of the 
ppu process due to any conflicts. Another area ignored 
in the reduced data is the system time required by the 
central monitor to do certain functions such as storage 
compaction. However, the central monitor was active 
about 5 percent of the elapsed time, and the model 
takes this into account by allowing time for the central 
monitor on a rate basis. The amount of time that a 
job could overlap its own I/O was not available in the 
reduced data. The TOM assumed that a job could not 
use the cau after an I/O operation had been requested. 
Fortunately, the difficulties presented above were either 
not very important or canceled each other out since 
the model was extremely accurate with respect to 
throughput and cPu utilization when simulating the 
two runs on which the data was collected using UT-1 
scheduling methods. The utilization of PPUS was not as 
accurately returned on run 2 as on run 1. Since the 
pPus were a surplus resource, the throughput and 
cpu utilization of the model was not sensitive to this 
variation. Table I illustrates the agreement of the 
results from the original runs and those given by the 
TDM. There is one other area which might have caused 
slight perturbations in the results. This concerns the 
problem of when to end the model. The model stops 
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when it requires N control points to be occupied and 
there are less than N jobs available. The effect of this 
possible perturbation turned out to be very slight owing 
to the method for selecting the next job to occupy a 
control point. This method consisted of taking the 
next job from that control point stream for which the 
sum of the cvu time over all remaining jobs was largest. 
Once the accuracy of the model had been validated, the 
two special control points were dropped from con- 
sideration leaving only the five control points at which 
user submitted jobs were run with five vvus  made avail- 
able to the users at the five control points. This was 
done because the special control points were not affected 
by the scheduling algorithm, and it is the effect of these 
algorithms which we want to consider in this paper. 
The system now represented by the model may be con- 
sidered to be a system in which at most five jobs can be 
active at the same time and five I /o  processes can occur 
simultaneously. 

Results 

Some of the statistical properties of the trace data 
were determined. The mean vr, u disk service time was 
86.32 ms with a standard deviation of 117.46 ms. The 
mean cvu  service time between PPU requests was 
77.15 ms with a standard deviation of 5638 ms. The 
median cvu service time was between 5 ms and 6 ms. 
The highly skewed characteristic of the cetr service 
time distribution appears to be a fairly general char- 
acteristic of multiprogrammed computer systems. 
It has been observed in many sets of measurements in 
this laboratory and in other studies [11, 12]. In order to 
test the significance of the contention that some jobs 
are "compute  bound"  and some jobs are "I /O bound,"  
the first ten autocorrelation coefficients of cetr service 
times were calculated for each job. The mean of all 
cvu service times was used in the calculation. Although 
occasional jobs displayed significant autocorrelation 
coefficients, some were positive and some were nega- 
tive. A weighted average was computed for each auto- 
correlation coefficient by weighting the corresponding 
coefficient for each job according to the number of 
cvtJ bursts per job. All the averages were positive but 
less than .01. 

It has been widely stated and assumed that the "bes t"  

way to schedule the cvu in a multiprogramming system 
is to give the cvc  to the job that will compute for the 
shortest period of time before issuing an I/O request. 
We accepted this and the dual assumption: the "wors t "  
way to schedule the Cl, g is to give it to the job that 
will compute for the longest period of time before 
issuing and I/O request. Trace-driven modeling enables 
one to compute performance results for these two 
scheduling methods. 

If the assumptions are correct then the performance 
results for all realistic scheduling methods will lie 

between these two extremes. Hence one can make 
absolute judgments about the performance of a sche- 
duling method as well as relative judgments. 

Two performance measures were computed for all 
cvu scheduling methods tested. The first measure is 
the total real time necessary to complete the trace data. 
We call this the throughput time. The second measure 
is the cvu efficiency as a percentage, that is, the total 
cvtr time divided by the throughput time times 100. 
The results are presented as percentage increases 
over the "wors t "  method as follows: for scheduling 
method A, let TA be the throughput time; let Tw be 
the throughput time for the worst method. The through- 
put increase for method A is 100" (Tw -- Ta) /Tw.  

Tw was 4381.00 sec. If CA is the cvv efficiency for 
method A, the cvu efficiency increase for method A 
is CA -- Cry where Cw is 80.33 %, the cvu effÉciency for 
the worst method. The throughput increase for the 
"bes t "  method over the worst method was 12.89%. 
The cvu efficiency increase was 11.19%. All other 
scheduling methods tested showed a positive through- 
put increase less than 12.89 % and a positive cvu effi- 
ciency increase less than 11.19%. Thus no counter 
examples were found for the correctness of the best 
and worst assumptions. The high level of performance 
of the worst method in this resource-rich system ac- 
counts for the seemingly small increase. However, it 
should be noted that the best method recovers over 
half of the unused cvu time that occurs for the worst 
method. 

The best and worst methods mentioned above are 
preemptive; that is, scheduling decisions are made 
whenever a job joins the cvu queue. The currently com- 
puting job may be stopped and later resumed at the 
point of interruption. The first experiment performed 
was to test nonpreemptive best and worst scheduling 
methods. In a nonpreemptive method, scheduling de- 
cisions are made only when the currently computing 
job issues in I/O request. The throughput increase for 
the "nonpreemptive best" method was 3.06% and the 
cvt: efficiency increase 2.43 %. The throughput  increase 
for the "nonpreemptive worst" method was .20 % and 
the cvu efficiency increase was .23 %. Since the non- 
preemptive best performance was so far below the 
preemptive best performance, it was decided that pre- 
emption is a necessary part of any good scheduling 
method and only one other nonpreemptive method 
was considered. It was the classical "First-Come-First-  
Served," FCFS, method. The throughput increase for 
rcFs was .78%, and the cvo  efficiency increase was 
.68 %. Note that this result lies between worst and best 
nonpreemptive methods. 

Some queuing theory results (Baskett [13]) indicate 
that round-robin, RR, CVU scheduling will yield per- 
formance improvements when the cvu service time 
distribution is highly skewed and the autocorrelation 
coefficients are negligible. The next experiment was 
an experimental verification of the theoretical results. 
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Fig. 1. Throughput and CPU efficiency increase for round-robin 
scheduling. 
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RR CPU scheduling allows each job in the cPu queue to 
compute for a maximum of Q time units. If the cur- 
rently computing job uses all Q time units without 
issuing an I/O request, that job is preempted and put 
at the end of the cPu queue. The job at the front of 
the cPu queue is then allowed to compute for a maxi- 
mum of Q time units, etc. Q is called the quantum. 
Figure 1 shows the throughput increase and cpu effi- 
ciency increase for quantum sizes from 4 msec to 1024 
msec in powers of 2 and a quantum size of infinity 
(FCFS scheduling). The experimental results have the 
form predicted by the theoretical results. The 8-msec 
quantum size gave the best performance with a through- 
put increase of 10.08 % and a cPu efficiency increase of 
8.75 %. It should be noted that the model assumes no 
overhead is required to switch the cPu from one job 
to another. (On a CDC 6600, the overhead is actually 
32 usec.) Figure 1 also illustrates the degree to which 
throughput increases and cPU efficiency increases cor- 
respond. A similar degree of correspondence was 
found in all other scheduling methods tested. 

The last experiment was concerned with preemptive 
predictive scheduling in the manner of Stevens [I], 
Marshall [2], Wulf [3], and Ryder [4]. The basic 
technique is to predict the length of the next cPu 
service time for a job based on the job's  past behavior 
and to give the cPu to the job with the smallest pre- 
dicted value. If the predictions are 100 percent ac- 
curate, this scheduling technique will be the "bes t "  
method. Six different scheduling methods of this 
type were tested. The first four methods use an "ex-  
ponential smoothing" predictor (Brown [14]) as fol- 
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lows. If X,_I is the (n -- l)-st cPu service time for a 
job and 3~,_1 is the (n - 1)-st prediction for that 
job then the prediction of X, is 

-Xn = otXn-1 + (1 -- a).X,_~ (1) 

where = is a real number between 0 and 1. The larger 
the value of a the more heavily weighted is the most 
recent past and the less heavily weighted is the more 
distant past. For  a = 1, the predicted next value is 
exactly equal to the most recent actual value. In general 

n--1 

3;, -- a ~ (1 - ot)i.X'n_i_l. 
i = 0  

In these tests, it is assumed that 3~0 = 0 and that X0 
is the first service time. 

Four  different values of a determined four different 
prediction formulas. The values tested were a = 1, 
a = .75, a = .5, and a = .25. Since these scheduling 
methods were preemptive, a new scheduling decision 
was made each time a job joined the cPu queue (com- 
pleted an I /o  service). A new predicted cou service 
time was determined for the job joining the cPo queue 
according to formula (1). A new predicted cPu service 
time was also determined for the job currently comput- 
ing, which was the old predicted value minus the time 
already used. Note that this may lead to a negative 
predicted cPu service time. Then the cPu was given 
to the job with the smallest predicted value. For these 
tests the best results were achieved for a = .5 with a 
7.43 % increase in throughput and 6.11% increase in 
cau  efficiency. The worst results were achieved for 

= .25 with a 6.66% increase in throughput and a 
5.45 % increase in cPU efficiency. It was noted that the 
results were good but not exceptional and that the 
differences in performance for different values of a 
were small. The percentage of correct choices made 
by these predictive methods was determined, and all 
four were close to 75 %. When there was only one job 
in the cvu queue, the scheduling of the job was counted 
as a correct choice. This accounted for nearly half of 
the correct choices. 

Two other predictives schedulers were tested. One 
was a "complete history" method and the other was a 
" r a n d o m  guess" method. The complete history method 
predicts that the next cPU service time will be equal to 
the mean of all past service times for that job. The 
formula is 

X ,  = (X,_x + ) ~ , _ l ( n -  1))/n (2) 

where 3~0 = 0 is assumed and :to is the first service 
time. This method is similar to that used by Stevens. 
The results for the complete history predictive method 
were in the same range as those for the exponential 
smoothing predictive methods, although the percentage 
of correct choices was slightly lower (73 %). The random 
guess method gave an increase of 3.59 % in throughput  
and 2.88 % in cPu efficiency. The percentage of cor- 
rect choices was also substantially lower (67 %). 
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Table II. Summary of Performance of CPU Scheduling Methods 
BEST 

Preemptive Nonpreemptive Preemptive 

Thru 12.89 3.06 0 
CPU 11.19 2.43 0 

Round robin 

WORST 

Nonpreemptive 

.20 

.23 

Quantum 4 8 16 32 64 128 256 512 1024 
Thru 9.04 10.08 8.09 8.52 7.45 5.99 3.52 2.64 1.87 
CPU 8.02 8.757.16 7.55 6.63 5.23 3.27 2.47 1.76 

Predictive 

Bound = 256 ms Bound = 512 ms Bound = 1024 ms 

Thru CPU HITS Thru CPU Hits Thru CPU Hits Thru 
a = 1.0 10.88 9.26 77.0 11.53 9.88 77.9 11.25 9.60 78.2 6.87 

= .75 10.11 8.54 77.4 11.43 9.74 77.7 10.62 9.01 78.6 7.01 
= .5 10.93 9.32 77.4 10.93 9.28 76.4 11.26 9.61 78.1 7.43 
= .25 11.50 9.84 77.1 11.30 9.61 77.1 9.96 8.39 77.1 6.66 

Complete 9.85 8.29 72.8 9.63 8.09 74.4 7.96 6.59 75.3 6.71 
History 
Random 6.85 5.60 60.0 5.92 4.82 62.8 4.76 3.76 65.1 3.59 
Guess 
Thru: percentage increase in throughput over W O R S T  method. 
C P U :  percentage increase in C P U  efficiency over W O R S T  method. 
Hi ts :  percentage o f  correct scheduling decisions. 

FCFS 

.78 

.68 

Unbounded 

CPU Hits 
5.62 74.5 
5.74 75.9 
6.11 75.8 
5.45 75.2 
5.48 73.2 

2.88 66.6 

Following the suggestion of  Marshall [2] and Ryder 
[4], these six predictive schedulers were modified to 
place an upper bound on the amount  of time any one 
job was allowed to compute. This effectively divides a 
very long cPu service time into a sequence of smaller 
service times, all but the last of which is equal in length 
to the upper bound. The prediction formulas (1) and 
(2) are such that they would never predict a service 
time longer than the upper bound under these cir- 
cumstances. If  the value of the upper bound is B, a 
new scheduling decision is made at least every B-time 
units. Three bounds were tested: B = 1024, 512, and 
256 msec. All substantially improved the performance 
of the six predictive scheduling methods. For the ex- 
ponential smoothing methods, when B = 1024 ms the 
results f o r a  = .5 a n d a  = 1 were the best of the six 
and were very close to each other. When B = 512 ms, 
the exponential smoothing method with o~ = 1 was the 
best, and when B = 256 ms, the results for ~ = .25 
were best. All four of the exponential smoothing 
methods gave very similar results for each B, and no 
general improvement was obtained by dropping B from 
512 to 256. The throughput results for the six predic- 
tive methods for the three bounded cases and the one 
unbounded case are illustrated in Figure 2. All the 
numerical results are summarized in Table II. 

1068 

Conclusions 

Figure 3 illustrates the comparative throughput 
performance of the best of each type of cvu scheduling 
method. It is clear that a good scheduling method 
must be preemptive and must prevent any job from 
capturing the cPu for too long a period of time. The 
performance of round-robin scheduling is probably 
better than most would expect, and the performance of 
predictive methods without bounds is probably worse 
than most would expect. In a system where "fairness" 
is important, such as time-sharing systems and some 
university systems, and the actual overhead for switch- 
ing the cvo  from one job to another is small, a round- 
robin scheduling method might be preferred. In a 
system where external priorities are important or 
the switching overhead is large, an exponential smooth- 
ing method might be preferred since external priorities 
could be used for tie breaking. The number of switches 
performed for the 8 ms round-robin case was 376,286, 
while the number of switches performed for the a = 1, 
B = 512 ms exponential smoothing case was 73,201. 
It is clear that the bound on the predictive techniques 
is necessary because the accuracy of the predictors is 
not extraordinary and the bound gives them another 
chance when they make a poor choice. Any predictive 
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Fig. 2. Throughput increase for predictive scheduling. 
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Fig. 3. Scheduling method versus throughput increase. 
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m e t h o d  can be expected to  make  a large number  o f  poo r  
choices since the au toco r re l a t i on  coefficients for  the 
c p u  service t imes are  so small .  

Trace-dr iven  mode l ing  has  been found  to be an 
excel lent  vehicle for  pe r fo rming  con t ro l l ed  scientific 
exper iments  to  eva lua te  resource  a l loca t ion  pol icies  
in c o m p u t e r  systems.  " L i v e "  exper iments ,  in add i t i on  
to  being cost ly  and  t ime-consuming ,  suffer f rom an 
unde t e rmine d  a m o u n t  of  noise  in the resul ts  because  
o f  differences in the p roduc t i on  env i ronmen t  and  
difficulty in i so la t ing  exper imenta l  var iables .  T rad i t i ona l  
s imula t ion  mode l s  suffer f rom uncer ta in  accuracy  in the  
s imula ted  input .  The  t race-dr iven  mode l  is flexible and  
pract ica l .  The  results  are accurate .  These exper iments  
have  p r o d u c e d  a be t te r  unde r s t and ing  of  the  fac tors  
con t r ibu t ing  to  successful c a u  schedul ing in a mul t i -  
p r o g r a m m i n g  system. 

Received February 1971; revised January 1972 

References 

1. Stevens, D.F. On overcoming high-priority paralysis in 
multiprogramming systems: A case history. Comm. ACM 11, 8 
(Aug. 1968), 539-541. 
2. Marshall, B.S. Dynamic calculation of dispatching priorities 
under OS/360 MVT. Dalamation (Aug. 1969), 93-97. 
3. Wulf, W.A. Performance monitors for multi-programming 
systems. Proc. Sec. Symp. Oper. Syst. Principles, Oct. 1969, 
175-185. 
4. Ryder, K.D. A heuristic approach to task dispatching. IBM 
Syst. J. 8, 3 (1970), 189-198. 
5. Saltzer, J.H., and Gintell, J.W. The instrumentation of multics. 
Comm. ACM 13, 8 (Aug. 1970), 493-500. [These authors pungently 
draw attention to the need for controlled experimental studies.] 
6. Cheng, P.S. Trace-driven system modeling. IBMSyst. J. 8, 
4 (1969), 280-289. 
7. Pinkerton, T.B. Performance monitoring in a time-sharing 
system. Comm. ACM 12, 8 (Nov. 1969), 608-610. 
8. Schwetman, H.D. Jr. A study of resource utilization and 
performance evaluation of large-scale computer systems. Tech. 
Syst. Note-12, Computation Center, U. of Texas at Austin, 1970. 
(Also available as the Ph.D. dissertation of H.D. Schwetman, U. 
of Texas at Austin, 1970.) 
9. Baskett, F., Browne, J.C., and Raike, W.M. The management 
of a multi-level non-paged memory system. Proc. AFIPS 1970 
SJCC, Vol. 36, AFIPS Press, Montvale, N.J., pp. 459-465. 
10. Schwetman, H.D., and Browne, J.C. Controlled experiments 
on the resource utilization on the multi-processor, 
multiprogrammed computer system. (Submitted for publication.) 
11. Bryan, G.E. Joss: 20,000 hours at the console, a statistical 
summary. Proc. AFIPS 1967 FJCC, Vol. 31, AFIPS Press, 
Montvale, N.J., pp. 769-777. 
12. Scherr, A.L. An Analysis of Time-Shared Computer Systems. 
MIT Press, Cambridge, Mass., 1967. 
13. Baskett, F. Mathematical models of computer systems, Ph.D. 
Diss., U. of Texas at Austin, 1970. 
14. Brown, R.G. Statistical Forecasting for Inventory Control. 
McGraw-Hill, New York, 1959. 

1069 Communications December 1972 
of Volume 15 
the ACM Number 12 


