
Operating B. Randell
Systems Editor

Trace-DrivenModeling
and Analysis of CPU
Scheduling in a
Multiprogramming
System

Stephen Sherman, Forest Baskett III, and
J.C. Browne
The University of Texas at Austin

Microscopic level job stream data obtained in a
production environment by an event-driven software
probe is used to drive a model of a multiprogramming
computer system. The CPU scheduling algorithm of the
model is systematically varied. This technique, called
trace-driven modeling, provides an accurate replica of a
production environment for the testing of variations in
the system. At the same time alterations in scheduling
methods can be easily carried out in a controlled way
with cause and effects relationships being isolated. The
scheduling methods tested included the best possible and
worst possible methods, the traditional methods of
multiprogramming theory, round-robin, first-come-
first-served, etc., and dynamic predictors. The relative
and absolute performances of these scheduling methods
are given. It is concluded that a successful CPU
scheduling method must be preemptive and must prevent
a given job from holding the CPU for too long a period.

Key Words and Phrases: scheduling, CPU
scheduling, multiprogramming, performance
measurement, trace driven models

CR Categories: 4.10, 4.20, 4.31, 4.32

Introduction

The primary purpose of a mult iprogrammed operat-
ing system is to bring into balance the demand for
processing and I /o facilities presented by the user job
load, so that computing facilities and I/O facilities are
utilized to the ultimate degree in order to maximize
throughput. Efforts to bring about a balance between
demand for compute resources and I /o resources can
be approached f rom a job scheduling (external) view-
point, where efforts are made to load into the working
memory a set of jobs which include both compute
bound and I/O bound jobs. It is, however, well known
that the character of resource demand of a given job
may fluctuate dramatically over short-time intervals
of operation. It is therefore necessary to consider in-
ternal processor, or cpu scheduling, and I/O facility
scheduling if utilization of both classes of resources
is to be efficient. Several papers [1, 2, 3, 4] have sug-
gested that dynamic calculations of internal priorities
for scheduling the cPu for mul t iprogrammed jobs will
yield a significant improvement in throughput and
cPU efficiency. All of these scheduling methods at tempt
to give higher priorities to I /o bound jobs than to cpu
bound jobs, and to assume that the past performance
of a job, either its immediate past or an average of its
history, is a valid indicator of future performance. The
basic concept of all of these papers is that priority of a
given process for cpu service should be determined

Copyright O 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

This research was supported in part by the National Science
Foundation under Grant GJ-1084. A preliminary version of this
paper was given at the SIGOPS workshop on System Performance
Evaluation, Cambridge, Mass. April 1971.

Authors' addresses: S. Sherman and J.C. Browne, Department
of Computer Science and Computation Center, The University of
Texas at Austin, Austin, TX 78712; F. Baskett III, Department of
Computer Science, Stanford University, Stanford, CA.

1063 Communications December 1972
of Volume 15
the ACM Number 12

by the probability that the process will generate an
I/O request in the next period of cPu activity. Each
previously studied case, however, implicitly or ex-
plicitly involved alterations in the scheduling policy
or other significant changes in the system in addition
to dynamic assignment of cau priority. None of the
previous workers made any systematic effort to com-
pare the various possible cPu scheduling methods. All
of the previously reported work was done by altering
the scheduling policy in an actual operating system.
In these circumstances in order to attempt valid com-
parison of any great number of algorithms, a great deal
of labor would be necessary.

This paper compares various cPu scheduling policies
under circumstances such as: (1) the effects of the
scheduling algorithms are isolated and valid compari-
sons [5] between different policies can be made, and
(2) changes in the cPu scheduling methods become
very easy to make. We use a trace-driven model, TOM,
as defined by Cheng [6] as the test-bed for comparison
of the scheduling methods. (See also Pinkerton [7].)
The data to drive the TOM was obtained in a separate
study [8] where a software probe recorded the activity
of the UT Austin CDC 6600 system at the minimum
quantum level of system activity. This data, including
such factors as cvu burst times and I/O service times,
was used to produce a job stream whose demands for
cpu and I/O service are known at the microscopic level.
This job stream is then run through the model system
with a set of cPu scheduling algorithms. In addition to
considering several possible dynamic predictors for
cpu scheduling we use the standard algorithms of
multiprogramming theory, round robin, first-come-
first-served, etc., as well as theoretic "bes t" and "wors t "
scheduling policies. Several surprising results are ob-
tained. In particular, it becomes clear that essential
factors in a successful scheduling algorithm are a pre-
emptive mechanism and a bound on the cvu burst
time, either directly by imposing an upper bound or
indirectly via a round-robin method.

Previous Work

Most of the previous experimental work published
in this problem area has been concerned with the use
of dynamic predictors. Stevens [1] used the running
average of compute time to I/O time charged to each
job as the measure of internal priority for cvc schedul-
ing. He observed a doubling of throughput and an
increase of 18 percent in cPv utilization. However, a
number of other changes were made in the system at
the same time. It is thus difficult to totally isolate
effectiveness of the dynamic scheduling in this case.
Marshall [2] considered two schemes. One was a
reward-penalize scheme in which, if a job requested
I /o before the termination of a system quantum of
time, it received a longer quantum of activity the next

1064

time it was run, whereas, if it failed to generate an
I /o activity in a minimum system quantum, it was
penalized and given a smaller quantum the next time
it was run. This did not turn out to be a particularly
significant approach. Marshall then went to a cumula-
tive ratio as a predictor. He used the ratio of total
wait time over wait time plus cPu time as an internal
priority measure. This was found to be an effective
procedure which increased productivity by a signifi-
cant amount in actual operation. Marshall, however,
imposed a maximum burst time of 5 sec by forcing a
rescheduling of internal priorities at this interval. We
shall see later that this should probably have a very
significant effect on the performance metrics. Wulf
[3] has studied dynamic internal scheduling and has
implemented a moving average procedure on the
Burrough's B5500. He found that this modification in
scheduling together with changing the job mix produced
a 25 percent increase in processor utilization. However,
it is not clear what improvement is due to the dynamic
priority adjustment. Ryder [4] implemented a scheme
basically utilizing the information gathered in the last
time quantum of job operation to predict the future
behavior. Ryder's algorithm was essentially heuristic
and had six factors, including a reward-penalize factor
and an upper-bound on cPu burst time. It is difficult to
isolate from his algorithm the key factors which yield
improvement in cPu utilization and throughput. Ryder
also made some effort to correlate his results with
cPu-I/O overlap, a subject which we will discuss in a
subsequent paper. Baskett, Raike, and Browne [9] and
Schwetman and Browne [10] have studied the use of
round-robin procedures with varying time quantum
size.

The Trace-Driven Model

The data used in this study was collected on a CDC
6600 running under the UT-1 operating system by the
use of an event-driven software probe [8]. The CDC
6600 has 128 k words of central core memory, 4-6638
disks, 12 x/o channels, and one half million words of
extended core storage. The 6600 itself is an 11 computer
complex consisting of a very fast central processor
(cPu) and I0 peripheral processors, ppu. The Peus are
primarily used for I/O and control functions. The
UT-1 system under consideration designates one PPU
as the monitor to coordinate all system activity. One
ppo is used to drive the operator display console. Three
other PPUS are dedicated to other tasks such as, driving
the teletype system, driving the card readers, line
printer, etc., and driving the high speed remote com-
puters. The remaining 5 PPUS are available to perform
transit system functions and user I/O. The 128 k words
of central memory are allocated (by software) to seven
or fewer control points which are virtual cpu's. Only
one program at a time can be assigned to a control
point, and a program is not a candidate for execution

Communications December 1972
of Volume 15
the ACM Number 12

T a b l e I . C o m p a r i s o n o f M o d e l R e s u l t s a n d A c t u a l R e s u l t s

R U N 1 R U N 1 R U N 2 R U N 2
M O D E L E D M O D E L E D

T i m e o f d a y 10:13:42 - - 20 :24 :16 - -
Jobs started 547 - - 275 - -
Jobs t o m - 552 - - 270 - -

pleted
Elapsed 4037.35 4048.47 2435.23 2434.26

time*
C P U active 3639.49 3653.25 2318.06 2316.07

time*
Percent 90.15 90.24 95.19 95.15

active*
User PPI 2271.15 2198.52 1254.71 1518.83

idle time*
Percent idle 56.27 54.30 51.56 62.39

D E G R E E O F M U L T I P R O G R A M M I N G t

Measured Control var Measured Control var

Mean 5.436 5.436 5.915 5.915
Standard .997 .997 .899 .899

deviation

* All times are expressed in seconds.
All seven control point streams were used in the validation.

in central memory unless it is assigned to a control
point. The ux-1 system uses one control point for
buffer space for all system I/O tasks. A second control
point is used by the teletype network supervisor. This
leaves five control points available for occupancy by
user submitted jobs. All requests for the utilization of
resources or for the initiation of new activity are
handled by the monitor. The event-driven software
probe is in the monitor. The probe records every re-
quest in a small buffer in central memory and dumps
this information on tape. A careful analysis [8] has
shown that the software probe has virtually no effect
on system activity. A more detailed description of the
CDC 6600, the or-1 system, and the software probe
can be found in Schwetman [8]. The empirical data
used in this analysis was gathered on May 13, 1970.
These tapes were selected for detailed analysis from a
number of available tapes with highly similar char-
acteristics. The system running time includes the
initiation and completion of over 500 jobs for the first
set of data and nearly 300 jobs for the second set of
data. The two data sets reflect quite different external
job mixes but extremely similar internal characteristics.
This pattern is observed throughout the data sets ob-
tained by Schwetman [8]. Two different runs are used
to test the validity of our trace-driven model. The origi-
nal data included all of the events requested and
completed for seven control points and nine PPus
(the dedicated monitor is not included) as one stream
of data. It was convenient to consider only the most

pertinent requests due to the enormous volume of the
original data. The following information was extracted
from the original data tape for each control point with
millisecond accuracy.
1. For each I/O request (requests for system service
are included in I/O requests):

1.1 The name of the request,
1.2 the cpu time since the job started (the cpu
time is needed since the trr-I scheduler is RR),
1.3 whether to give up the cPu or not.

2. The cau time the job ended.
3. For each ppu function:

3.1 the name of the Ppu program (this corresponds
to the name of the I /o request),
3.2 the time the vpu requested that the cpu be
taken away from the control point,
3.3 the time the Peu finished.

The extracted information is in seven control point
streams, one corresponding to each control point.
The TDM will execute jobs taken from the seven streams
and bring them into one executable stream again.
The memory size required for each job was not recorded,
but an analysis of the original data yields the mean and
standard deviation of the degree of multiprogram-
ming. This mean and standard deviation is used by the
model to decide how many jobs should be running at
one time. This control over average degree of multi-
programming was used in lieu of explicit memory
management. The number of jobs in the trace data
appeared to be sufficient to insure reproducible behavior
when the order of scheduling was varied. Further,
there is only a secondary control on the effects of
possible channel and equipment request conflicts.
This control consists of the increased length of the
ppu process due to any conflicts. Another area ignored
in the reduced data is the system time required by the
central monitor to do certain functions such as storage
compaction. However, the central monitor was active
about 5 percent of the elapsed time, and the model
takes this into account by allowing time for the central
monitor on a rate basis. The amount of time that a
job could overlap its own I/O was not available in the
reduced data. The TOM assumed that a job could not
use the cau after an I/O operation had been requested.
Fortunately, the difficulties presented above were either
not very important or canceled each other out since
the model was extremely accurate with respect to
throughput and cPu utilization when simulating the
two runs on which the data was collected using UT-1
scheduling methods. The utilization of PPUS was not as
accurately returned on run 2 as on run 1. Since the
pPus were a surplus resource, the throughput and
cpu utilization of the model was not sensitive to this
variation. Table I illustrates the agreement of the
results from the original runs and those given by the
TDM. There is one other area which might have caused
slight perturbations in the results. This concerns the
problem of when to end the model. The model stops

1 0 6 5 C o m m u n i c a t i o n s D e c e m b e r 1 9 7 2

o f V o l u m e 15
t h e A C M N u m b e r 12

when it requires N control points to be occupied and
there are less than N jobs available. The effect of this
possible perturbation turned out to be very slight owing
to the method for selecting the next job to occupy a
control point. This method consisted of taking the
next job from that control point stream for which the
sum of the cvu time over all remaining jobs was largest.
Once the accuracy of the model had been validated, the
two special control points were dropped from con-
sideration leaving only the five control points at which
user submitted jobs were run with five vvus made avail-
able to the users at the five control points. This was
done because the special control points were not affected
by the scheduling algorithm, and it is the effect of these
algorithms which we want to consider in this paper.
The system now represented by the model may be con-
sidered to be a system in which at most five jobs can be
active at the same time and five I /o processes can occur
simultaneously.

Results

Some of the statistical properties of the trace data
were determined. The mean vr, u disk service time was
86.32 ms with a standard deviation of 117.46 ms. The
mean cvu service time between PPU requests was
77.15 ms with a standard deviation of 5638 ms. The
median cvu service time was between 5 ms and 6 ms.
The highly skewed characteristic of the cetr service
time distribution appears to be a fairly general char-
acteristic of multiprogrammed computer systems.
It has been observed in many sets of measurements in
this laboratory and in other studies [11, 12]. In order to
test the significance of the contention that some jobs
are "compute bound" and some jobs are "I /O bound,"
the first ten autocorrelation coefficients of cetr service
times were calculated for each job. The mean of all
cvu service times was used in the calculation. Although
occasional jobs displayed significant autocorrelation
coefficients, some were positive and some were nega-
tive. A weighted average was computed for each auto-
correlation coefficient by weighting the corresponding
coefficient for each job according to the number of
cvtJ bursts per job. All the averages were positive but
less than .01.

It has been widely stated and assumed that the "bes t"

way to schedule the cvu in a multiprogramming system
is to give the cvc to the job that will compute for the
shortest period of time before issuing an I/O request.
We accepted this and the dual assumption: the "wors t "
way to schedule the Cl, g is to give it to the job that
will compute for the longest period of time before
issuing and I/O request. Trace-driven modeling enables
one to compute performance results for these two
scheduling methods.

If the assumptions are correct then the performance
results for all realistic scheduling methods will lie

between these two extremes. Hence one can make
absolute judgments about the performance of a sche-
duling method as well as relative judgments.

Two performance measures were computed for all
cvu scheduling methods tested. The first measure is
the total real time necessary to complete the trace data.
We call this the throughput time. The second measure
is the cvu efficiency as a percentage, that is, the total
cvtr time divided by the throughput time times 100.
The results are presented as percentage increases
over the "wors t " method as follows: for scheduling
method A, let TA be the throughput time; let Tw be
the throughput time for the worst method. The through-
put increase for method A is 100" (Tw -- Ta) /Tw.

Tw was 4381.00 sec. If CA is the cvv efficiency for
method A, the cvu efficiency increase for method A
is CA -- Cry where Cw is 80.33 %, the cvu effÉciency for
the worst method. The throughput increase for the
"bes t " method over the worst method was 12.89%.
The cvu efficiency increase was 11.19%. All other
scheduling methods tested showed a positive through-
put increase less than 12.89 % and a positive cvu effi-
ciency increase less than 11.19%. Thus no counter
examples were found for the correctness of the best
and worst assumptions. The high level of performance
of the worst method in this resource-rich system ac-
counts for the seemingly small increase. However, it
should be noted that the best method recovers over
half of the unused cvu time that occurs for the worst
method.

The best and worst methods mentioned above are
preemptive; that is, scheduling decisions are made
whenever a job joins the cvu queue. The currently com-
puting job may be stopped and later resumed at the
point of interruption. The first experiment performed
was to test nonpreemptive best and worst scheduling
methods. In a nonpreemptive method, scheduling de-
cisions are made only when the currently computing
job issues in I/O request. The throughput increase for
the "nonpreemptive best" method was 3.06% and the
cvt: efficiency increase 2.43 %. The throughput increase
for the "nonpreemptive worst" method was .20 % and
the cvu efficiency increase was .23 %. Since the non-
preemptive best performance was so far below the
preemptive best performance, it was decided that pre-
emption is a necessary part of any good scheduling
method and only one other nonpreemptive method
was considered. It was the classical "First-Come-First-
Served," FCFS, method. The throughput increase for
rcFs was .78%, and the cvo efficiency increase was
.68 %. Note that this result lies between worst and best
nonpreemptive methods.

Some queuing theory results (Baskett [13]) indicate
that round-robin, RR, CVU scheduling will yield per-
formance improvements when the cvu service time
distribution is highly skewed and the autocorrelation
coefficients are negligible. The next experiment was
an experimental verification of the theoretical results.

1066 Communications December 1972
of Volume 15
the ACM Number 12

Fig. 1. Throughput and CPU efficiency increase for round-robin
scheduling.

ughput
L d 7 -
fl:: 6_ _ . .c . Pu \ ' , ,
z 5- Efficiency

I -
Z 4 -
!..d
0 3 -
13/

n"' 2-

4 8 16 :32 6 4 128 2 5 6 512 1024 no

QUANTUM (milliseconds)

RR CPU scheduling allows each job in the cPu queue to
compute for a maximum of Q time units. If the cur-
rently computing job uses all Q time units without
issuing an I/O request, that job is preempted and put
at the end of the cPu queue. The job at the front of
the cPu queue is then allowed to compute for a maxi-
mum of Q time units, etc. Q is called the quantum.
Figure 1 shows the throughput increase and cpu effi-
ciency increase for quantum sizes from 4 msec to 1024
msec in powers of 2 and a quantum size of infinity
(FCFS scheduling). The experimental results have the
form predicted by the theoretical results. The 8-msec
quantum size gave the best performance with a through-
put increase of 10.08 % and a cPu efficiency increase of
8.75 %. It should be noted that the model assumes no
overhead is required to switch the cPu from one job
to another. (On a CDC 6600, the overhead is actually
32 usec.) Figure 1 also illustrates the degree to which
throughput increases and cPU efficiency increases cor-
respond. A similar degree of correspondence was
found in all other scheduling methods tested.

The last experiment was concerned with preemptive
predictive scheduling in the manner of Stevens [I],
Marshall [2], Wulf [3], and Ryder [4]. The basic
technique is to predict the length of the next cPu
service time for a job based on the job's past behavior
and to give the cPu to the job with the smallest pre-
dicted value. If the predictions are 100 percent ac-
curate, this scheduling technique will be the "bes t "
method. Six different scheduling methods of this
type were tested. The first four methods use an "ex-
ponential smoothing" predictor (Brown [14]) as fol-

1067

lows. If X,_I is the (n -- l)-st cPu service time for a
job and 3~,_1 is the (n - 1)-st prediction for that
job then the prediction of X, is

-Xn = otXn-1 + (1 -- a).X,_~ (1)

where = is a real number between 0 and 1. The larger
the value of a the more heavily weighted is the most
recent past and the less heavily weighted is the more
distant past. For a = 1, the predicted next value is
exactly equal to the most recent actual value. In general

n--1

3;, -- a ~ (1 - ot)i.X'n_i_l.
i = 0

In these tests, it is assumed that 3~0 = 0 and that X0
is the first service time.

Four different values of a determined four different
prediction formulas. The values tested were a = 1,
a = .75, a = .5, and a = .25. Since these scheduling
methods were preemptive, a new scheduling decision
was made each time a job joined the cPu queue (com-
pleted an I /o service). A new predicted cou service
time was determined for the job joining the cPo queue
according to formula (1). A new predicted cPu service
time was also determined for the job currently comput-
ing, which was the old predicted value minus the time
already used. Note that this may lead to a negative
predicted cPu service time. Then the cPu was given
to the job with the smallest predicted value. For these
tests the best results were achieved for a = .5 with a
7.43 % increase in throughput and 6.11% increase in
cau efficiency. The worst results were achieved for

= .25 with a 6.66% increase in throughput and a
5.45 % increase in cPU efficiency. It was noted that the
results were good but not exceptional and that the
differences in performance for different values of a
were small. The percentage of correct choices made
by these predictive methods was determined, and all
four were close to 75 %. When there was only one job
in the cvu queue, the scheduling of the job was counted
as a correct choice. This accounted for nearly half of
the correct choices.

Two other predictives schedulers were tested. One
was a "complete history" method and the other was a
" r a n d o m guess" method. The complete history method
predicts that the next cPU service time will be equal to
the mean of all past service times for that job. The
formula is

X , = (X,_x +) ~ , _ l (n - 1))/n (2)

where 3~0 = 0 is assumed and :to is the first service
time. This method is similar to that used by Stevens.
The results for the complete history predictive method
were in the same range as those for the exponential
smoothing predictive methods, although the percentage
of correct choices was slightly lower (73 %). The random
guess method gave an increase of 3.59 % in throughput
and 2.88 % in cPu efficiency. The percentage of cor-
rect choices was also substantially lower (67 %).

Communications December 1972
of Volume 15
the ACM Number 12

Table II. Summary of Performance of CPU Scheduling Methods
BEST

Preemptive Nonpreemptive Preemptive

Thru 12.89 3.06 0
CPU 11.19 2.43 0

Round robin

WORST

Nonpreemptive

.20

.23

Quantum 4 8 16 32 64 128 256 512 1024
Thru 9.04 10.08 8.09 8.52 7.45 5.99 3.52 2.64 1.87
CPU 8.02 8.757.16 7.55 6.63 5.23 3.27 2.47 1.76

Predictive

Bound = 256 ms Bound = 512 ms Bound = 1024 ms

Thru CPU HITS Thru CPU Hits Thru CPU Hits Thru
a = 1.0 10.88 9.26 77.0 11.53 9.88 77.9 11.25 9.60 78.2 6.87

= .75 10.11 8.54 77.4 11.43 9.74 77.7 10.62 9.01 78.6 7.01
= .5 10.93 9.32 77.4 10.93 9.28 76.4 11.26 9.61 78.1 7.43
= .25 11.50 9.84 77.1 11.30 9.61 77.1 9.96 8.39 77.1 6.66

Complete 9.85 8.29 72.8 9.63 8.09 74.4 7.96 6.59 75.3 6.71
History
Random 6.85 5.60 60.0 5.92 4.82 62.8 4.76 3.76 65.1 3.59
Guess
Thru: percentage increase in throughput over W O R S T method.
C P U : percentage increase in C P U efficiency over W O R S T method.
Hi ts : percentage o f correct scheduling decisions.

FCFS

.78

.68

Unbounded

CPU Hits
5.62 74.5
5.74 75.9
6.11 75.8
5.45 75.2
5.48 73.2

2.88 66.6

Following the suggestion of Marshall [2] and Ryder
[4], these six predictive schedulers were modified to
place an upper bound on the amount of time any one
job was allowed to compute. This effectively divides a
very long cPu service time into a sequence of smaller
service times, all but the last of which is equal in length
to the upper bound. The prediction formulas (1) and
(2) are such that they would never predict a service
time longer than the upper bound under these cir-
cumstances. If the value of the upper bound is B, a
new scheduling decision is made at least every B-time
units. Three bounds were tested: B = 1024, 512, and
256 msec. All substantially improved the performance
of the six predictive scheduling methods. For the ex-
ponential smoothing methods, when B = 1024 ms the
results f o r a = .5 a n d a = 1 were the best of the six
and were very close to each other. When B = 512 ms,
the exponential smoothing method with o~ = 1 was the
best, and when B = 256 ms, the results for ~ = .25
were best. All four of the exponential smoothing
methods gave very similar results for each B, and no
general improvement was obtained by dropping B from
512 to 256. The throughput results for the six predic-
tive methods for the three bounded cases and the one
unbounded case are illustrated in Figure 2. All the
numerical results are summarized in Table II.

1068

Conclusions

Figure 3 illustrates the comparative throughput
performance of the best of each type of cvu scheduling
method. It is clear that a good scheduling method
must be preemptive and must prevent any job from
capturing the cPu for too long a period of time. The
performance of round-robin scheduling is probably
better than most would expect, and the performance of
predictive methods without bounds is probably worse
than most would expect. In a system where "fairness"
is important, such as time-sharing systems and some
university systems, and the actual overhead for switch-
ing the cvo from one job to another is small, a round-
robin scheduling method might be preferred. In a
system where external priorities are important or
the switching overhead is large, an exponential smooth-
ing method might be preferred since external priorities
could be used for tie breaking. The number of switches
performed for the 8 ms round-robin case was 376,286,
while the number of switches performed for the a = 1,
B = 512 ms exponential smoothing case was 73,201.
It is clear that the bound on the predictive techniques
is necessary because the accuracy of the predictors is
not extraordinary and the bound gives them another
chance when they make a poor choice. Any predictive

Communications December 1972
of Volume 15
the A C M Number 12

Fig. 2. Throughput increase for predictive scheduling.

m-, Exponential
~ m o o t h i n g

,,~ ~ ~ - ~ ~

Q a- History ~ " X ~

_z 6

z 5
n-°4w 4 Guess

o_ 3

o
z56 51z io'24

BOUND (milliseconds)

12.89%

10.93-11.55%

10.08%

9.65 %

5.92 %

5.06%

.78 %

.20%

0%

Fig. 3. Scheduling method versus throughput increase.

BEST (preemptive)]
(512 ms Exponential
bound) Smoothing ~
(8 m.s , Round
ouonfurr~ Robin I
(~/2 nr ~ Complete HL~tnrv
(5~,n~ ~ Random

Guess
_ _ J BEST (non- preemptive)

]

FCFS
WORST (non-preemptive)
WORST (preemptive)

m e t h o d can be expected to make a large number o f poo r
choices since the au toco r re l a t i on coefficients for the
c p u service t imes are so small .

Trace-dr iven mode l ing has been found to be an
excel lent vehicle for pe r fo rming con t ro l l ed scientific
exper iments to eva lua te resource a l loca t ion pol icies
in c o m p u t e r systems. " L i v e " exper iments , in add i t i on
to being cost ly and t ime-consuming , suffer f rom an
unde t e rmine d a m o u n t of noise in the resul ts because
o f differences in the p roduc t i on env i ronmen t and
difficulty in i so la t ing exper imenta l var iables . T rad i t i ona l
s imula t ion mode l s suffer f rom uncer ta in accuracy in the
s imula ted input . The t race-dr iven mode l is flexible and
pract ica l . The results are accurate . These exper iments
have p r o d u c e d a be t te r unde r s t and ing of the fac tors
con t r ibu t ing to successful c a u schedul ing in a mul t i -
p r o g r a m m i n g system.

Received February 1971; revised January 1972

References

1. Stevens, D.F. On overcoming high-priority paralysis in
multiprogramming systems: A case history. Comm. ACM 11, 8
(Aug. 1968), 539-541.
2. Marshall, B.S. Dynamic calculation of dispatching priorities
under OS/360 MVT. Dalamation (Aug. 1969), 93-97.
3. Wulf, W.A. Performance monitors for multi-programming
systems. Proc. Sec. Symp. Oper. Syst. Principles, Oct. 1969,
175-185.
4. Ryder, K.D. A heuristic approach to task dispatching. IBM
Syst. J. 8, 3 (1970), 189-198.
5. Saltzer, J.H., and Gintell, J.W. The instrumentation of multics.
Comm. ACM 13, 8 (Aug. 1970), 493-500. [These authors pungently
draw attention to the need for controlled experimental studies.]
6. Cheng, P.S. Trace-driven system modeling. IBMSyst. J. 8,
4 (1969), 280-289.
7. Pinkerton, T.B. Performance monitoring in a time-sharing
system. Comm. ACM 12, 8 (Nov. 1969), 608-610.
8. Schwetman, H.D. Jr. A study of resource utilization and
performance evaluation of large-scale computer systems. Tech.
Syst. Note-12, Computation Center, U. of Texas at Austin, 1970.
(Also available as the Ph.D. dissertation of H.D. Schwetman, U.
of Texas at Austin, 1970.)
9. Baskett, F., Browne, J.C., and Raike, W.M. The management
of a multi-level non-paged memory system. Proc. AFIPS 1970
SJCC, Vol. 36, AFIPS Press, Montvale, N.J., pp. 459-465.
10. Schwetman, H.D., and Browne, J.C. Controlled experiments
on the resource utilization on the multi-processor,
multiprogrammed computer system. (Submitted for publication.)
11. Bryan, G.E. Joss: 20,000 hours at the console, a statistical
summary. Proc. AFIPS 1967 FJCC, Vol. 31, AFIPS Press,
Montvale, N.J., pp. 769-777.
12. Scherr, A.L. An Analysis of Time-Shared Computer Systems.
MIT Press, Cambridge, Mass., 1967.
13. Baskett, F. Mathematical models of computer systems, Ph.D.
Diss., U. of Texas at Austin, 1970.
14. Brown, R.G. Statistical Forecasting for Inventory Control.
McGraw-Hill, New York, 1959.

1069 Communications December 1972
of Volume 15
the ACM Number 12

