
Architectural Support for Translation Table
Management in Large Address Space Machines

by

Jerry Huck
Hewlett Packard

19410 Homestead Ave.
Cupertino, CA 95014

Abstract

Virtual memoy page translation tables provide mappings

from virtual to physical addresses. When the hardware

controlled Tratmlation L.ookaside Buffers (TLBs) do not contain

a translation, these tables provide the translation. Approaches

to the structure and management of these tables vary from full

hardware implementations to complete software based

algon”thms.

The size of the virtual aaliress space used by processes is

rapidly growing beyond 32 bits of address. As the utilized

address space increases, new problems and issues surjace.

Traditional methoak for managing the page translation tables

are inappropriate for large address space architectures.

The Hashed Page Table (HPI’), described here, provides a

very fast and space ejicient translation table that reduces

ovdwad by splitting TLB management responsibilities between

hardware and software. Measurements demonstrate its

applicability to a diverse range of operating systems and

workloads and, in particular, to large virtual address space

machines. In simulations of over 4 billion instructions,

improvements of 5 to IO% were observed.

1. Introduction

Virtual memory, VM, is a fundamental abstraction of storage

used by computer systems to support concurrent execution of

processes. Processes can be protected from other processes

execution and processes can view storage in a simplified,

uniform manner.

Virtual memory defines a mapping function from one

address space to some other address space. Traditionally, that

mapping is a single translation from a virtual address, local to

the process, to a physical address that directly accesses storage.

These mappings are termed translations. The instruction set

provides management instructions to enable and disable the

translations, change translations, and control the protection

model that is often associated with the translation mechanism.

Virtual memory translation is often specified by the

architecture in terms of a memory-based table with the

expectation that some intermediate storage element will hold a

subset of these translations. The translation lookaside buffer

(TLB) is the most common structure used to hold this subset.
The processor interrogates the TLB with a virtual address and

searches for the corresponding translation. If found, the

hardware uses the translation to validate the access and locate

the data. Many approaches to the design of TLBs have been

implemented and measurements taken of their behavior
[Clar85][Tay190].

If the TLB does not contain the translation (an event known

as a TM miss), then typically some type of memory based table,

Jim Hays
EcoSvetems Software,
10055-Miller Ave., Suite 201

Cupertino, CA 95014

the page table, is accessed and the translation is entered into the

TLB.

Besides the translation, the page table entry usually holds

protection information that controls access (read/write/execute)

and status bits. The status bits might record if the page has been

recently referenced (reference bit) and if the page has been

written (dirty bit). The operating system may store additional

information in the page table not needed by the TLB, status bits,

or links to other software tables.

Overall performance of a computer system is dependent on

TLB access and management overhead. Measurements of large

scale applications, databases, networking, and operation systems

behavior indicate that a significmt number of the CPU cycles

can be consumed in TLB management. Later sections will

better quantify the costs; large scale data-base intensive

applications incur 5-189Z0 overheads. Extreme cases show

greater than 40% TLB overhead.

The page table structure of any VM system attempts to

optimize three different characteristics:

1. Minimize the time to service a TLB miss.

2. Minimize the physical memory space to maintain the

translations for the currently mapped pages.

3. Maximize the flexibility for software to support a variety

of VM mechanisms and capabilities.

Computer systems support the page table structure using

hardware, or hardware with some assistance by software, or

entirely by software. Hardware approaches seek the tilghest

performance while software only mechanisms retain the

flexibility to easily adapt the page table structures to changing

requirements.

No practical organization optimizes this set of

characteristics for all types of workloads. Organizations

effective for one workload may be a poor match for another.

Different operating systems make different demands on the

translation mechanisms.

The trends in computing point to changes in the utilization

of the address space. Object-oriented systems, mapped files,

shared objects, and distributed computing all increase the size of

the address space used by a process, encourage more sharing and

decrease the locality of the resulting virtual memory address

stream. The translation structure’s performance is influenced by

these changes. Later measurements quantify the very different

behavior of simple program and more complex operating system

execution.

Independent of the particular organization, all page tables
are simply a data structure that is primarily designed for

efficient retrieval of a translation using the virtual address as a

search key. Searching is a large field and well researched field.

39

0884-7495/93 $3.00 @ 1993 IEEE

Many data structures and search techniques are possible.

Choosing a high performance implementation is dificnk The

addition of just a single extra memory reference may be very

costly. Each clock cycle of the TLB miss handler must be

csrefull y considered and measured. For example, some page

structures use a hash table for searching. Theory suggests that

hash tables should be a prime number in size. Practice dictates

that these tables are alf powers of 2 in size.

The following section describes the two common page table

structures and analyzes their characteristics. This is followed by

the proposed alternative. The final section quantifies the

performance of these structures over a range of workloads and

operating systems.

2. Existing Virtual Memory Architectures

Two styles of page table organization dominate virtual

memory architectures today forward-mapped and inverted.

Forward-mapped page tables are the most common structure

used for 32-bit or less virtwd memory architectures. Inverted,

or alternatively reverse-mapped, page tables - IPTs - have been

typically used by large address space architectures.

2.1 Fotward-mapped page tables

Forward-mapped or alternatively multi-level page tables

generally use bits out of the virtual address to index a Klerarchy

of tables. The final level of the hierarchy, the leaf, contains a

vahdity indicator, the physical page number, and any status or

protection bits. For a particular virtual address, there is one

single location that holds the translation. Most architectures

with this structure allow portions of the hierarchy to be

unallocated by using vrdidit y bits in the higher levels. Some

architectures provide a short circuit approach that promotes leaf

pages to a higher place in the hierarchy when the address space

is sparsely used. Figure 1 shows an example table illustrating

this mechanism. The root pointer is used to start the search.

Each index merges bits from the entry with more of the virtual

address bits. The complete physical address is formed with the

page offset bits in the virtnaf address and physicaJ page number

in the leaf page.

The forward-mapped table is generally a per-process table.

Some control register holds a pointer to the first level of the

table. The amount of storage being used for the page tables is a

function of the amount of allocated virtusf memory. Portions of

the table need not be resident if none of its entries are mapped.

The page table itself can be referenced virtually or

physically. If physically referenced, then some table manager

controls the amount of physical memory being used.

As an example, to map 32-bits of address space with 4Kbyte

pages, a system might allocate 1024 entries in the root table.

Each root table entry in turn points to leaf pages each containing
1024 entries.

Since these per process page tables map the same virtual

address values, the virtual address is often augmented in the

TLB with an address space identifier (ASID) or process

identifier. The ASID acts to form a unique global address for

each process and avoids the need to purge the TLB on context

switch by preventing erroneous matching of a virtual address

from one process with a translation owned by another process.

Forward-mapped page table

Virtual Address
t 1 a 1 1

Root Physical
Pointer

Root page Firstlevel pages

II
I I

Figure 1 Leaf Pages

By duplicating entries on a per process basis, forwsrd-

mapped page tables offer a very flexible VM structure to the

operating system. It has full support for aliasing, copy-on-write,

and independent protection views (different protection mode for

different virtual addresses).

Thmx Servicing a TLB miss requires the loading of pointers

from each of the upper levels of the hierarchy and finally the

loading the last entry. The total cost to service a miss involves:

CPU overhead to suspend execution and step

through each part of the algorithm,

Memory and/or cache references to each level,

Possible TLB miss with virtnaf tables,

Possible page fault on the table itself, and

Possible updates of the dirty and reference bits.

In the earlier example, a TLB miss requires 2 memory

references and perhaps additional TLB misses if the page table

itself is virtually referenced.

Minimizing the miss time requires careful design of the

system. Some multiprocessing systems require bypassing the

cache for page structure references to avoid synchronization

problems with table management [Appo88]. Even on systems

that use the cache, relatively high miss rates occur. Later

measurements quantify these values.

The nature of the TLB miss address stream is an important

determinant of the system’s performance. Largely sequential or

densely packed TLB miss addresses match the characteristics of

forward-mapped page tables. On the other hand, more sparse

and distributed TLB miss addresses can result itI longer miss

service times.

An interesting variant on the forward-mapped table is a
single flat table that is indexed by the virtual page number

[DEC83]. The table is very large but only the used pages need

to be allocated. From a time standpoint, only one memory

reference and potentially one nested TLB miss is possible. For

sequential miss patterns the extra TLB miss only occurs on page

crossings on the table itself. For sparse accesses, this can

require both an expensive memory reference and an expensive

nested TLB miss.

In general, the introduction of just a single additionrd cache

miss in TLB miss handling can greatly reduce performance.

With cache miss times increasing from 10-20 cycles toward

40

30-70 cycles, this time could easily double or triple typical TLB

miss times. Later measurements quantify some of these effects.

One additional time issue is the hlt rate of the TLB itself.

Forward-mapped tables generally use address aliasing to share

data and require multiple entries in the TLB for the shared

pages. This effect reduces the apparent size of the TLB vs a

system that uses a single entry to map all access to a shared

page. AU even more costly approach, requires the purging of

translations between every context switch. Programming trends

to access mapped files, and shared memory objects will increase

the occurrence of this sharing. Forward-mapped systems

sometimes allow global sharing with some restrictions on the

allowed protection model. For example, the VAX architecture

allows all processes to share an address in system address space

in the same way, say, read-only.

Space: The space required for page tables is a function of the

amount and distribution of allocated virtual memory. In the

best case, all entries of the leaf pages are used. In the example,

this implies 1 word of overhead for every mapped page (4

bytes/4K bytes = .1%). In the worst case, sparse allocation

would only utilize one word of a leaf page to map each page

(4W4K = 100%)!

Perhaps a more typical case of the virtual address space

requirements for a process:

128K of instructions,

128K of static and dynamic data, and

16K of stack data.

This requires the root page, 1 leaf page for text and data and

another leaf page for the stack (3*4K/272K=4’%o overhead). The

root page might be shared with other root pages and reduce the

total overhead.

As the address space grows, the number of table levels needs

to grow or the page size needs to increase. Three or four table

levels may be needed for even modest growth in the virtual

memory range (say 40-48 bits). The best case overhead remains

similar. The entry size probably needs to iocrease to address a

large physical address size. In the worst case, the overhead

becomes n hundreds of percent with n being the number of table

levels. A fully supported 64-bit address space with 4K pages

and 8-b yte pointers and entries would require roughly 5 page

levels. The time and space implications of large address space

systems suggest the consideration of alternative structures and

approaches.

2.2 Inverted page tables

Implementations of large address space machines have

utilized the inverted page table structure [Lee89] [Chan88]

[IBM78]. It is a single table with one entry per physical page.

Each entry contains the virtual address currently mapped to a

physical page as well as some protection and status bits.

Discovering the virtual address given a physical address is

trivially determined by iodexittg the table with the physical

page number and examining the entry.

To determine the reverse mapping, namely virtual to

physical, a hash structure, the hash author table (HAT), is first

indexed by some function on the virtual address. The HAT

provides a pointer to a linked list of potential IPT entries. A

quick linear search comparing the desired virtual address with

the IPT entry’s virtual address completes the look-up. If no

match is found, the virtual address is not mapped and page fault

handling is itdiated. Figure 2 illustrates this structure.

Inverted Page Translation Table

Virtual Address

~ Physical Address

PDIR

VA I

We

PDIR

Base

u Figure 2

This global table is shared by all the processors. In a sense,

the ASID of the forward-mapped table is included in the address

itself. Protection in thk kind of architecture is either supported

by some kind of address isolation or by the use of storage keys.

The biggest difficulty with the IPT is the support for address

aliasing. Only one virtual to physical mapping may exist at one

time. Whenever aliasing is only used for sharing, most IPT

systems accomplish the same function with a global address. To

support aliasing for other reasons, the entries must be changed.

Tm& TLB miss handling performance is primarily a function

of the number of probes to find the translation. The very nature

of a hash table suggests one cache miss to reference the HAT

pointer. Given a fairly uniform random distribution of virtual to

real mappings, each element of the chain is another cache miss.

To minimize the average length of the chains, a large HAT is

used. Analysis of this type of hash structure allows the designer

to trade-off between average hash chain length and number of

entries in the HAT. The total cost of the TLB miss involves:

It is

CPU overhead to suspend execution and step

through each part of the algorithm,

Memory reference to the HAT pointer,

Memory reference to the IPT,

Possible memory references for chain elements, and

Possible update to the duty and reference bits.

~ossible to minimixe some of the HAT cache misses for

sequential TLB misses, but generally the memory references
have high cache miss rates. Later measurements quantify thk

parameter.

When sharing with global addresses, it is sometimes possible

to reduce the total number of TLB misses. Multiple processes

can re-use the same TLB entry and avoid misses.

Space: The size of storage for the mappings is a linear function

of the amouot of physical memory, with an overhead of roughly

(size of etttry)/(size of page). Independent of the amount of
allocated virtual memory, the physical memory overhead for the

mappings remains constant. This storage must be contiguous.

Holes in the physical address space wastes entries in the IPT in

order to preserve the index as the physical address. Memory

mapped I/O systems can waste significant storage in an IPT if it

cannot be efficiently packed.

For example, to map a 32Mbyte physicrd memory system

with 4Kbyte pages, a HAT of 16K entries is used to index a SK

entry IPT. Assume 32-bit physical addresses. 64-bit virtual

41

addresses carI be nicely packed into a 16byte entry for a

(8x16 Kbyte+16K*4byte)/4K = .6% overhead.

2.3 A combined hash table and IPT: The Hashed
Page Table

An alternative to the IPT is to combine the hash table and

IPT into a single hashed structure, termed - Hashed Page Table

(HPT), both time and space improvements to the traditional

inverted table are possible, Fewer memory references are

required and better utilization of memory is possible. Each

entry, HPTE, contains both the virtual address and the physical

address. No longer can the physical address be computed from

the index. Figure 3 shows the structure of this table.

Hashed Page Translation Table
Virtual Address

1 1

J

Physical Address

Collision Resolution
Table

HPT
Base

t

1

Figure 3

On a TLB miss, some hash of the virtual address is used as

an index into the table. The faulting virtual address is compared

with the virtual address in the entry. If equal, then the

translation is directly loaded. If not equal, then the link is used

to chaio all of the hash collisions together. Reaching the end of

chain indicates a page fault. Collisions can be chained dxectly

into the unused hash entries or chained into an overflow table.

Aliasing is simply supported. Whenever shared global

addresses can not be used, the alias is added to the table. This

creates multiple dirty and reference bits but does allow different

protection attributes. A global address space reduces the need

for aliasing and minimizes the number of extra entries.

Tmcv Serviciog a TLB miss requires a reference to the HPT

entry and avoids the reference to a separate HAT entry.

Eliminating a memory reference is a significant improvement

over the IPT structure.

The potential for a chain walk is a function of the size of the

HPT. The more entries relative to the number of translations,

the lower the likelihood of a chain walk. Choosing a 2 to 1 ratio

of entries to physical pages results in average chain lengths of

approximately 1.25 entries[Knut73].

Space: Similar to the IPT structure, independent of the virtual

memory utilization, there is a fixed overhead that scales with the

amount of physical memory. For a table with twice the number

of entries as physical pages, the overhead is

(16bytes/entry)*2/4Kbytes < 1?6. A table with four times the

number pages uses < 2% of physical memory.

Address aliasing will reduce the HPT’s effectiveness, require

a larger size, or require some special handling of certain entries.

For example, aliases associated with suspended or swapped

processes can migrate to the end of a chain or be deleted and

The HPT also efficiently handles holes in the physical

address space. This has become much more common with

graphics adaptors and other I/O devices that take a fixed large

amount of address space and use a subset based on the system

configuration. This characteristic gives the HPT a significant

space advantage over the traditional IPT. For example, a 50

Megabyte un-used segment of physical I/O address space can

waste 200Kbytes in unused page directory entries with 4K

pages.

Further Dwcussion: Many variations on the management of a

hash table such as the HPT are possible. Collisions can chain to

another structure. Secondary hashes could be considered. For

example, the MONADS project [Rose85] described a structure

similar to the HPT except it was implemented in a separate

memory, was managed as a primary TLB, and used internal

chaining.

Earlier releases of PA-RISC operating systems, which used

the standard IPT structure, had an optional software TLB -

swfl’LB - that is first interrogated using just the low 10 to 12 bits

of the virtmd page number as an index. An entry in that table

was equivalent to an HPT entry for validation purposes, but the

sflLB used a secondary hash to resolve collisions into the

original IPT. The SWTLB proved very effective in emly PA-

RISC machines for two reasons. The first PA-RISC systems had

large direct-mapped hardware TLBs. The software TLB was

two-way associative and greatly reduced the cost of thrashing.

A slightly later PA-RISC machine had a small two-way

associative hardware TLB. The ‘software TLB is very effective

since the software TLB had such a high hit rate. This

compensated for the lower hit rate in the small hardware TLB,

and had faster access because of its simplicity, in CPU

overhead, than the IPT table.

By making the HPT very large, it acts as a complete

replacement for the older hash table and IPT structure.

Alternatively, making the HPT smaller, it acts as a software

cache for some other representation of the remainder of the

translations. For example, a small HPT cm be used in front of a

forward-mapped page table.

A final observation: since the HPT entry is nearly identical

in form to a TLB entry, it is simple to build a hardware TLB

miss handler. It must compute the hash index, accesses the table

entry, and faults to software if the entry is not valid or some

update to the Such a hardware handler still allows great

flexibility for the software. Different page-table policies and

organizations are still open to the software since the hardware

does not do updates to the table. The designers of a recent PA-

RISC CPU chip [Dela92] found the implementation of an HPT

hardware miss handler similar to the complexity of the previous

generation’s 2 level TLB.

By uot restricting the size of the HPT or the organization of

the overflow table, a VM system has complete flexibility to

implement a variety of mechanisms and policies.

3. Data Structures and Implementation

The following sub-sections describe in more detail the

format of the measured translation data structures, their

requirements, hardwarelsoftware interactions, and miss

algorithms. Understanding the actual data structures prototype

and simulated along with the operating system environments

will aid in the interpretation of the simulation results. Thisfaulted back onto the chain.

42

should help the reader to understand how to adapt the results to

alternative data structures and search algorithms.

3.1 Operating systems environments

HP’s Unix - HP-UX and the proprietary MPE/ii operating

system support text and data sharing through a global address

model. Objects are shared between different tasks using the

same 64-bit virtual address. It is the responsibility of the

operating system to manage the address space to enforce the

desired level of protection for each application. Copy-on-write

is implemented as copy-on-access. In the MPE/ii environment

64-bit pointers may be directly manipulated by end-user

applications. Under MPE/iX the database and the file system are
memory mapped and accessed directly through a 64-bit address.

Each opa file is mapped in its entirety within the 64-bit address

space. Both HP-UX and MPE/ii originally used an inverted

page table as their primary translation data structure. The trace

data used in the simulations was obtained from these two

operating system environments.

Most Unix implementations use a more traditiomd sharing

model where each task is given it’s own private 32-bit flat

address space. If two tasks share code or data, it is

accomplished through aliasing multiple virtual addresses to the

same physical address. A forward mapped page table is

commonly used as the primary translation data structure. These

per-task page tables are simple to implement and support

arbitrary aliasing. The acronym ASM, for aliased sharing

model, is used to represent an operating system that uses

aliasing and a forward mapped page table. This model is

included in the simulation due to its use in existing

implementations of the OSF/Mach based operating system.

3.2 Forward-mapped page table model

A two level page table is selected over a three level table to

determine a lower bound on TLB miss times for the ASM

model. Deeper forward mapped page tables, which are required

for larger than 32-bit address spaces, will only increase the miss

overhead. The structure of the simulated forward mapped table

and search algorithm is based on TLB miss handler code used in

an OSF-UPA-RISC port. The layout of the ASM forward

mapped table simulated is as follows:

Root Table entries

RootEntry

I real address of leaf PTE I
*

*

Leaf table entries

r x t m x rpn[O: 19]

r x t m x rpn[O19]

r x t n x rpn[O:19] Ooooo

I= Ref bit, m= Modify bit, rpn= Real page number,

x= Other unrelated bits

Utilizing a per task 32-bit flat address model reduces the

amount of data which must be retained in the tables. Per process

protection information and high order address bits (upper 32

bits of 64 bit address) can be maintained in a global or control

register, and need not be duplicated in each page table entry,

The algorithm to handle a user TLB miss is outlined below.

Each step may require one or more instructions. Exact cycle

counts attributed to each algorithm are provided in the

measurement section.

TLB software miss algorithm (user TLB miss): Move the

faulting address to general registers. Determine if the reference

is to system or user space. Move the User Root table pointer to

a general register. Determine the privilege level. Determine if

the reference is to a different process’s 32-bit space. Calculate

the index into the root table. Load the root table entry.

Calculate an index into the leaf page. Load Page table entry.

Check reference bit. Form protection information. Insert

address, rpn, and protection information into the hardware TLB.

Finally, return from interrupt.

There is no need for a valid bit in the page table entry.

Invalid entries are initialized with an entry which will generate

a protection fault if loaded into the TLB and then accessed. The

specified algorithm could have been shortened by several cycles

if the hardware were capable of delivering system and user TLB

miss exceptions on distinct interrupt vectors.

3.3 Inverted page table model

The inverted page table model supports 64-bit global

addressing as follows:

HashTableEntry

wordO rpn&link 0000001 Next PDE Index Ioa)oo

PageDirectoryEntry

wordO rpn&link Mooooool Next PDE Index 1000oo1,
wordl tagl Upper VA

word2 tag2 Lower VA IOooooooooooo
I t I

word3 prot t rights 0000 key(15)
M

r = Ref bit, m = Modify bit, x = Other software bits

TLB MISS Algorithm

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Move 64-bit faulting address and hash table base into

general registers. Hash the faulting address and compute

an address into the hash table.

Load hash tabie entry (word O).

Check H bit to see if end of chain.

Calculate the page dwectory entry from the page

directory base, and hash table pde index loaded in step2.

Load virtual address tag 1 from page directory wordl.

Compare faulting address with virtual address tag. If not

equal load Next Pde index (wordO), goto step 3.

Load the virtual address tag2 from page directory entry

word2.

Compare faulting address with virtual address tag. If not

equal load Next Pde index (wordO) and goto step 3.

Load protection fields (word3), and check reference bit.

Insert address, rpn, and protection information into the

hardware TLB. Return from interrupt.

43

The layout of the hash table entry and first word of each page

directory are identical. Word O of the page directory and hash

table encodes both the next link and the physicrd page number

(rpn) for the following entry. While this encoding scheme is

more compact and saves memory it also restricted the page

directory to a physically contiguous table and allows no

aliasing. Each page directory entry resides within one 16-byte

cache line. The hash function provides an even distribution of

addresses over the hash table.

3.4 Hashed page table model

The format of the HPT is the same regardless of whether it is

being used as a native translation table or if it is being used as a

cache fronting the ASM forward mapped page tables. The

structure supports a full 64-bit global address space and is layed

out as follows:

HashedPageTableEntry

word O tagl v offset[O:14] space[16:31]

word 1 protl r t rights key(15) k

word 2 rpnl 00000001 rpn[O:19]

word 3 linkl real address of next hpt entry

A second 4 word entry was combined with the first for a 32-

byte aligned entry when investigating alternate formats.

word 4 tag2 v offset[O:14] space[16:31]

word 5 prot2 r t key(15) b

word 6 rpn2 0000000] rpn[O19] 10tMOo

word 7 link2 real addres of next hpt entry

TLB Miss Algorithm:

1.

2.

3.

4.

5.

Move 64-bit faulting address and hashed page table base

into general registers. Hash the faulting address and

compute an address into the HPT.

Load HPTE tag wordO.

Compare faulting address with virtual address tag. If not

equal read the next link from word3 and go back to step

2)

Load protection fields (wordl), and check reference bit.

Load the rpn.

Insert address, rpn, and protection information into TLB.

Retrim from interrupt.

One or two four word entries are contained in one 32-byte

cache line. The preceding data structure was simulated with

several variations; two are described in detail:

● 16-byte entries each containing one translation.

● 32-byte entries each containing two independent 16-byte

entries which checked in parallel or serially for a match (a

2-way associative HPT).

Each of these was evaluated based on the hardware costs and

performance. The best solution for the intermediate hash table

will depend, in part on the hardware organization of the on-

cbip TLB. A direct mapped on-chip TLB might do better with a

two-way associative table.

Optimization were made to the hash algorithm of both the

HPT and inverted page table to further streamline the miss path.

The original software hash function was 5 instructions. It was

chosen to give an even distribution of addresses in the hash

table. It made no assumptions about the address stream. Since

the operating system allocates the ASIDS (on PA-RISC an ASID

is the upper 32 bits of the 64-bit address and is stored in a space

register), rather then just assigning them in a sequential manner,

they can be allocated in a pseudo random sequence. This

randomization allows a simpler hash function and still

approximates a random uniform distribution in the hash table.

A single XOR of the upper virtual address bits and the lower

virtual page number bits is effective.

The hardware needs to generate a hash table address, so the

hash table is aligned to its size (which is a power of two).

Hardware can simply OR in the base HPT table address with the

hashed index bits to calculate the effective address of the hash

bucket.

To reduce the size of an HPT entry representing a 64-bit

address, the tag is compressed from 52 bits to 32 bits. This

allows a more compact table and requires less overhead to

determine if there is a match. To guarantee that the tag is

unique in a hash chain the extra bits which are not a part of the

page offset must be used in the hash to generate a unique

position within the table. This leads to several restrictions on

the table. First it can be no smaller then 32 entries (given the

4K page size) and a 48-bit global address space. Each

subsequent bit of virtual address space allocated by the

operating system requires a doubling of the table size. Even a

modest 4K entry table allows the use of 56 bits of virtual

address.

3.5 Hardware HPT and the software interface

A final implementation issue is to properly split hardware

and software responsibilities to balance the performance, cost,

and flexibi$y’. The term nutive HPT is used to describe the

scenario where the operating system’s translation tables map

directly onto the HPT format. Overflow buckets which are

searched by software have the same format as the head HPT

bucket. When using a hashed page table with HP-UX, hardware

searches the head bucket of the operating system’s native

translation table. On failure, a trap to software allows HP-UX to

continue the seaxch. The term hybrid HPT describes a scenario

where hardware searches an HPT cache and traps to a software

managed table if the entry is not found.

Both approaches can be unified in the same hardware

handler. The hardware does the same work to search the first

bucket of a hash table in either the native or hybrid HPT. The

main difference is the action that software takes on a miss. To

maximize the benefit an efficient hand-off mechanism is needed

which reduces the amount of re-work required when a software

trap occurs.

When using the hashed page table as the native tables, the

operating system needs to determine where to continue the

search. When using a forward-mapped table in conjunction

with the hash table, the operating system needs an efficient

mechanism to update the hash table once the normal page walk

has finished.

Hardware provides the necessary data to the operating

system through a control register when it determines it cannot

resolve the TLB fault with the entry stored at the front of the

HPT.

On a TLB miss, hardware hashes into the HPT and checks

for a hit. If the reference bit and modify bit are set to allow the

access then the entry is inserted into the TLB. If there is a

virtual tag mismatch then hardware deposits word 3 of the

HPTE into a control register. Word 3 is not interpreted by

hardware and it’s value is maintained by softwwe. In the case

where the HPT is a part of the native translation table (e.g. HP-

UX) word 3 contains the address of the overflow bucket. When

the HPT is being used as a cache in conjunction with a foreign

table, word 3 will be written by the operating system to point to

the entry itself. Thk will give the software miss handler a

handle on where to write the entry in the HPT cache after

installing the translation in the hardware TLB.

If hardware detects an invalid virtual tag, a reference or

modtiy bit exception, it haps to software and deposits the

address of the head HPT entry into the control register (rather

then word 3). J.n this scenario sofb,vare needs to inspect the

contents of the head bucket. Software attempts to resolve the

fault by setting the appropriate bits in the HPT entry and

retrying, or trapping to higher level software.

3.6 Software update of table entries

The task of modtiying the translation tables in each model is

given to software to simplify hardware and give software more

flexibility when modifying an entry. It also allows the operating

system to keep track of additional information on the types of

accesses which are made to a page.

Allowing the operating system to intervene in the first

reference and first modification of a translation allows the

operating system to break out the standard reference and dirty

bits into additional (modified, accessed, and execute)

information bits based on the type of access being performed.

On systems wtdch have virtually indexed caches and non-

coherent I/O systems, this allows important cache flushing

optimization. Not only can this reduce overhead on the single

CPU it can reduce communication overhead in an MP system.

Without software management of the reference and

modification bits this information would have not been possible

to collect. The overhead to manage these bits is small given that

they were stored in the HPT and are not manipulated in the

typical miss path.

4. Measurements

The HPT analysis suggests that it will perform uniformly

better than the inverted table. The performance benefits of the

HPT when used to cache a different page table structure is not

obvious. This section measures and compares the performance

of the HPT with the traditional inverted and forward-mapped

page table structures. Measurements of the HPT’s performance

when used as a cache for a forward-mapped page table are also

presented.

Data measurements for events such as TLB misses is a

difficult task. This work combines 2 common approaches -

hardware monitoring and software simulation - to measure

meaningful workloads for systems that were not available

[Jain91][Ston88].

The selected benchmarks are executed on a specially
modified CPU to trace each cycle of execution. It is possible to

hold about 2 million instructions worth of continuous execution

before the machine must either be stalled or collection

suspended while the data is dumped to permanent storage.

Stalling the processor creates problems in managing the real

time clock and perturbs the measurement. For very simple

benchmarks, like the SPEC suite, stalling is acceptable. For

more complex benchmarks, like the transaction processing and

large multi-user suites, the perturbation of the J/O system would

be unacceptable. These traces use statistical sampling. While

the system is executing the workload, the hardware tracer

captures several traces spaced out in time. The trace includes all

executed instructions, instruction addresses, and data reference

addresses for that interval: operating system state, user state,

interruptions, everything. For this study 20 traces were

collected for each workload. The trace were stripped of the

TLB misses generated by the measurement system since they

correspond to a specific hardware organization. The paper by

Jog [Jog90] first describes this environment.

The stripped traces are run through a simulator to @c the

V*1OUS environments. For example, to simply measure the TLB

miss rate, the simulator is configured with the desired size,

associativity, and replacement algorithm. Each trace is executed

by the simulator and the data collected from the TLB

simulation. The trace is executed in the sense that the data and

instruction memory addresses are applied to a simulation of the

targets ystem to capture a variety of relevant measures.

A warm start approximation for the caches is utilized which

uses the cache state at the end of one trace as the starting point

of the next trace. Measurements of actual systems have

vrdidated this approach [Cal193].

There were 330 milhon instructions captured in the traces

and over 4.7 billion instructions were simulated.

For this study, the simulator is configured to measure the

behavior of TLB miss handling. When a TLB miss occurs, the

simulator mimics the memory references that the model

requires, generates those addresses, and applies them to the

cache and memory models. This two step approach allows the

measurement of complex and long mnning workloads and still

retain flexibility in cache, TLB, and page table organization.

Generally speaking, a trace’s TLB miss rate is unaffected by

the underlying translation structure. But the TLB miss rate is

effected by the sharing model. Traditionally, IPT based systems

have shared data using common global addresses. Shared

instruction and memory segments have the potential to reduce

the TLB miss rate by finding a translation from the previous

process. This only requires a single TLB entry to exist to map

the page for all processes. Forward-mapped page table based

systems traditionally share data using address aliasing. Each

alias requirks an additional TLB entry. When little sharing

occurs this is not important but environments with large

amounts of instruction or data sharing may encounter different

miss rates.

AU traces labelled ASA4 are HP-UX traces that have been

modified to simulate what would have been the address trace in

a per-process address space model. The simulator observes

when a context switch occurs, and adjusts the instruction and

data address stream to appear to be per-process. This approach

generates aliases when the original trace is sharing data or

instructions. The most common data sharing is by the

instruction segment. Some data sharing occurs in the multi-user
benchmarks.

Measurements of the originaJ IPT structure were not

modeled using the two steps of tracing and simulation since the

benefits for using an HPT over the IPT had already been

45

demonstrated with prototype software h the lab. At the time

this paper was written, resource constraints prevented re-

running the traces against just the IPT model. Instead, the IPT

data is generated by using an equivalent sized HPT’s first bucket

cache hit rate as an approximation to the IPT’s hash anchor

table cache hit rate. This cache cost plus a fixed overhead in

instruction cycles is then added to the equivalent sized HPT’s

total cost.

The following workloads were collected while executing the

HP-UX operating system

● finite - a large finite element application

● doduc - SPEC

. eqntott - SPEC

. espresso - SPEC

● fPPPP - SpEC
● gcc - SPEC

. hilo - circuit simulator

● Ii - SPEC

● matrix - SPEC

● nasker - SPEC

● spice - SPEC

● tomcatv -SPEC

● OLTP 1-UX - A large on-line transaction processing relational

database application.

. telcom-ux - A telecommunications benchmark.

● 0LTP2-ux - A variation on OLTP1 -UX.

Additional workloads were collected whale executing the

MPEliX operating system:

● B atch-mpe - Batch hierarchical database application.

● OLTP 1-rope - An on-line transaction processing relational

database application.

● 0LTP2-mpe - A batch manufacturing database application.

● 0LTP3 -rope - A variation on OLTP 1-rope.

All the traces - in particular, the matrix and nasker traces - are

from older generation compilers and do not represent the latest

optimization. For most programs, this will have little effect on

the TLB miss pattern. For matrix, and to a lesser extent nasker,

this is a very significant effect. Consider matrix to represent a

program that misses the data TLB on every 16 or so instructions.

The last three &aces (OLTP1, telcom, and 0LTP2) are large

multi-user benchmarks and better represent workloads fully

utilizhg the available memory.

The simulations modeled a 96 entry fully-associative

combined TLB. The TLB requires an extra 1 cycle penrdty for

each page crossing to validate a mapping for the current

instruction address. Additionally, block TLB entries map the

static portion of the HP-UX operating system and significantly

reduce the number of TLB misses. The MPE/iX operating

system is paged and does not utilize block TLB entries.

Penalties consistent with current PA-RISC systems are

assumed. The hardware portion of TLB miss handling with an

HPT takes a basic 9 cycles. For associative table entries, the

hardware requires an extra 2 cycles to examine a second entry.

The basic software access to the HPT takes 27 cycles. Chain

walking takes an extra 9 cycles per chain element. The basic

software forward-mapped table access takes 28 cycles and, if

necessary requires 8 cycles to update a HPT cache.

AU the measurements use the smne hash algorithm cost, and

equivalent basic cycle costs such that performance differences
only reflect the differences in page table structure.

The cache is a 256K direct-mapped data cache and an equal

size instruction cache. The average data cache miss penalty is

30 cycles.

In summary, these measurements are derived from actual

traces of significant workloads. The restdts are measured using

a simulation of the desired system using instruction traces as

stimulation.

4.1 Key to graph labels

The graphs used in the remaining sections are labeled to

identify the environment. The label encodes the base operating

system type, software or hardware table walking, page table

forma~ HPT size, and associativity. The HPT size ranges from

1/4 the number of physical pages to 4 times the number of

physical pages. For example, with 32Megabytes of memory,

16K table entries are 2 times the number of physical 4Kbyte
pages.

Name Tjpe
Hw Total #

support of entries. .
UX-SW-IPT4X-lW
UX-SW-HPT4X- 1w
UX-HW-HPT4X-1 W

UX-HW-HPT2X-2W

ASM-HW-HPT2X- 1W

ASM-HW-HPT1 X- 1W

ASM-HW-HPT.5X-lW

ASM-HW-HPT.25X-IW

ASM-SW-FMPT

ASM-HW-FMPT

iX-SW-WT2x- 1w
iX-HW-HPT2x- 1w

iX-SW-HPT2x-lw

IPT
HPT
HPT

HPT

FMPT

FMPT

FM17

FMPT

FMPT

FMPT

IPT
HPT

AN Sw
All Sw
HW-HPT
SW-0ver60w
HW-HPT
SW-overtlOw
HW-HPT

SW-FMPT
HW-HPT
SW-FMPT
HW-HPT
SW-FMPT
HW-HPT
SW-FMPT
‘u Sw
No HPT
All m
No HPT
Au Sw
HW-HPT
SW overflow
‘MI Sw

32K
32K
32K

32K

16K

8K

4K

2K

32K
32K

32K

Each HP-UX @ace was taken on a machine with 32

Megabytes of memory. The MPE/iX workloads were collected

on a 64Megabyte machine.

These measurements represent the management of a 48-bit

virtual address space. The HP-UX operating system

environment allocates the upper 16 bits in a uniform distribution

and the lower 32 bits are allocated in the standard instruction,

data, and stack segments.

4.2 TLB Overhead Percentage

Oraphs 1 and 2 measure the percentage of total cycles per

instruction (CPI) attributed to TLB miss activity when utilizing

an HPT or IPT data structure. The graphs give insight into the

relative importance of the TLB miss component with respect to

various workloads. They rdso demonstrate the impact of an HPT

on overall performance. Oraph 1 contains HP-UX trace data

from both technical and commercial workloads. Oraph 2

contains MPE/iX trace data for commercial workloads.

For example, the OLTP1 -UX benchmark spends 12% of its

time in TLB miss handling. That benchmark mns s~o faster just

46

due to a software HPT vs. the original IPT structure. Hardware

TLB handling gives another 4% improvement. The OLTP3-

mpe workload in graph 2 spends 18.5% of its time handling

TLB misses under the software IPT model. The software HPT

saves 4~o and a hardwme HPT saves an additional 6Y0.

Large multi-user programs consistently show the greatest

improvement when moving to the HPT. This is to be expected
since their more demanding use of address space results in a

higher TLB miss rate.

4.3 HPT cache miss rate vs HPT Size

Graph 3 measures the data cache miss rate into the head

HPT bucket as a function of the HPT size. Insights into the

importance of the cache miss penalty with respect to overall

TLB overhead can be obtained by joining data in this graph with

graphs 1, 4, and 5. For example, the multi-user workloads show

a fairly high TLB overhead in graph 1. From graph 3 these

workloads show a cache miss rate of approximately 2070 (at 30

cycles per miss). This is a sizeable component of their overall

TLB miss penalty given in graph 4.

While the graph does not show the individual cache miss

rates for the forward-mapped page table, the following data is

presented for comparison. Simulation of the forward mapped

page tables under the OLTP1-UX, Telcom, and the 0LTP2-ux

multi-user workloads showed a 2-39Z0cache miss rate in the root

table, and a 12-15% miss rate in the leaf entry. Under the

numeric benchmarks the root table miss rate ranges tkom a O-370

while the leaf entries range all the way up to a 25’ZOcache miss

rate.

4.4 Original IPT vs HPT

To better understand the TLB miss overheads graph 4

displays the average cycles per TLB miss including cache miss

penrdties for several configurations all with the same number of

total entires. The original software IPT scheme, software l-way

HPT, hardware 1-way HPT, and hardware 2-way HPT are

shown. For example, the finite benchmark has a 56 cycle per

TLB miss penalty when using a software-only IPT.

The cycles per miss data shows that a software HPT can save

a significant number of cycles over’the original IPT. The savings

can be broken into a static and dynamic component. The HPT

saves 6 cycles per miss over the IFT in just basic cycle costs.

The remaining difference is attributed to the one less cache line

load. The cost of that load is 30 cycles times the cache miss rate

into the IPT hash table for the given workload. Those

workloads with a modest TLB CPI component, and a high cache

miss rate into the translation table, will benefit the most.

In the multi-user benchmarks, the cache penalty cycles

accumulated whale walking the HPT or IPT amount to 2(L3570

of the average TLB miss overhead. The use of a hardware HPT

miss handler is significantly faster. The basic overhead (not

counting cache penalty cycles) is nearly half the software

equivalent. The measured dynamic chain lenghts ranged from

1.02 to 1.13 in length.

A 2-way associative HPT performs slightly worse then the

l-way HPT. This was due to the serial compares in hardware

(an extra 2 cycles). Had the compares been done in parallel, the

higher hit rate in the 2-way table would have made a 2-way

table more attractive.

4.5 HPT hybrid vs forward-mapped table

Graph 5 compares various forward-mapped page table

(FMPT) results with a native hardware HPT and a small HPT

used as a cache for the software managed forward-mapped page

tables. The different strategies are compared based on their

respective cycles per TLB miss. For example, the small HPT

fronting an FMPT is 3 cycleshniss less than a direct hardware

FMPT in thejnite benchmark.

A problem with these HP-UX benchmarks is that they do not

use enough of the address space to force the creation of

additional levels in the forward-mapped page table la two level

page table is sufficient). A more aggressive use of the 64-bit

virtual address space, by the HP-UX operating system, to

concurrently map more objects such as is done by MPE/ii

would force one or more additional levels to be instantiated in

the forward-mapped tables. This would in turn push up the

forward-mapped table cycles per miss count.

The results indicate that a small 1-way associative HPT,

sitting in front of a forward mapped table, can be effective in

reducing the cycles per miss overhead. Under the workloads

investigated the combined hybrid strategy gives performance

similar to a hardware forward mapped walker, and maintains a

simpler hardware structure. This is an important result since it

demonstrates that a simple hardware HPT can be designed in a

flexible manner which supports/enhances more then one style of

page table management.

4.6 TLB miss rate vs sharing Model

With the ASM model, shared memory does not share the

same TLB entry. For all the single process benchmarks this

makes no difference to the overall TLB miss rate. But with the

multi-user benchmarks that share instructions and to a lesser

extent dat% the TLB miss rate changes significantly.

Oraph 6 shows TLB miss rates for the 3 multi-user

benchmarks. These small values are magnified by the cost of a

miss. The 61% increase in the number of TLB misses for the

Telcom-UX benchmark (.35% to .57%) amounts to a

proportional change in overall TLB costs from roughly 3.5% to

5%. These numbers do not reflect the use of shared libraries or

mapped files that could further increase the sharing of TLB

entries across processes.

4.7 Page Table front bucket Hit Rate

Graph 7 measures the hit rate into the head bucket for four

different HPT organizations. For example, 82% of the TLB

misses are resolved in the front bucket while executing the

doduc benchmark with the ASM-HW-HPTIX-lW workload.

From the graph, the hit rate into the front bucket is

reasonably high. As expected, the larger the table the more

likely the first entry holds the desired translation. A 2-way

associate HPT achieves a higher hit rate then the 1-way.

However as graph 4 demonstra~es, the increased hit rate is n~t

enough to offset the extra cycles spent in searching the two

entries in series.

The effectiveness of moving an entry to the head bucket on a

miss (chain reordering) is apparent when one looks at the hit

rate of the much smaller ASM HPT verses the HP-UX HPT

(8000 vs 32000 entries). The reason the ASM model can

perform ahnost as well, and occasionally better, is that it is

constantly moving the faulting translation into the HPT cache

where it is visible to the hardware handler. This suggests that it

47

might be useful to consider reordering the HP-UX HPT under

certain workloads.

Graph 8 shows the sensitivity of the miss rate of the front

bucket as a function of the HPT cache size. Generally, the

cache is effective, but some workloads - especially the multi-

user ones - show the need for large caches to hold the translation

working set.

5. Conclusions

This paper demonstrates the effectiveness of a hardware

HPT which is flexible enough to be used as the primary

translation mechanism for large address space machines or as an

efficient cache fronting a different page table design. The HPT

is designed to maximize the effectiveness of TLB management

by minimizing the overhead in handling TLB misses while still

allowing complete operating system VM flexibility. Both

hardware and software participate in the HPT trade-offs to

provide a cost effective solution.

The analysis and data demonstrate that an HPT will out

perform the standard IPT. An HPT maintains the same scalable

storage properties as the IPT. This is a significant attribute

when managing sparse access patterns.

It is shown that the HPT can be configured to operate like a

cache in front of a more traditional forward-mapped table. Not

all operating system environments can tolerate the limited

aliasing capabilities of a “native” HPT. The data demonstrates

that under most work loads the hybrid solution exceeds or

equals the performance of the hardware forward-mapped

walker.

The measurements reflect the behavior of TLBs in large

address space machines in the sense that all the virtual memory

of each process is being managed as a single sparsely allocated

unit. Since the measured systems contained only 32 or 64

megabytes of physical memory, the measurements are only an

approximation of fiture systems which use a larger virtual

address space. The HPT’s performance is independent of the

physical memory size, the amount of allocated virtual memory,

and the sparseness of the virtual memory.

The HPT is being used in HP’s latest operating system

release on PA-RISC hardware platforms.

6. Acknowledgments

Customizations to the simulator and data collection were

performed by Joe Martinka. His comments and insights greatly

improved the anrdysis of thk paper. We would also like to

thank Eric Delano, Greg Snider, Duncan Weir, John Wilkes, and

the anonymous reviewers for their detailed suggestions and

criticisms.

7. References

[Apo188] Apollo Computer Inc. Series 10000 Technical

Reference Libra~ Volume 1- Processors and Instruction

Set. Order No. 011720-AOO. Apollo, Chelmsford MA,

1988.

[Chan88] Albert Chang and Mark F. Mergen, 801 Storage:

Architecture and Programming, ACM Transactions on

Computer Systems, Vol 6, No 1, February 1988, pp 28-50.

[Clar85] Doug Clark and Joel Emer. Performance of the

VAX- 11/780 translation buffer Simulation and

measurement. ACM Transactions on Computer Systems,

3(1):31-62, February 1985.

[DEC83] DigitaJ Equipment Corporation. VAX Architecture

Reference Manual. Dec. EK-VAXAR-RM-O02. DEC,

Bedford, MA, 1983.

[Dela92] Eric Delano, Will Walker, Jeff Yetter, Mark

Forsyth. A High Speed Superscalar PA-RISC Processor.

Spring Compcon ’92, February 24-28, 1992, pp. 116-121.

[Cal193] Jim Canister. (in HP’s PA-RISC performance

group). Personal communication.

[IBM78] IBM. IBM System/38 technical developments.

Order no. G580-0237, IBM, Atlanta, GA., 1978.

[Jain91] Jain, R. The Art of Computer Systems Pe~ormance

Analysis, pages 98-101, 404-428. John Wiley & Sons,

1991.

[Jog90] Jog,R., Vitale,P., and Canister, J. Performance

Evaluation of a Commercial Cache-Coherent Shared

Memory Multiprocessor. ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems,

pages 173-182, May 1990.

[Knut73] Donald E. Knutb The Art of Computer

Programming - Volume 3: Sorting and Searching,

Addison Wesley, pp 506-549, 1973.

[Lee89] Ruby B. Lee. Precision Architecture. Computer,

January 1989.

[Rose85] Rosenberg, J. and Abramson, D.A. “MONADS-

PC: A Capability Based Workstation to Support Software

Engineering”, Proc. 18th Hawaii International Conference

on System Sciences, 1985, pp. 222-231.

[Ston88] Stone,H., High-Pe#omaance Computer

Architecture, pg. 41-52. Addkon-Wesley, 1987.

[Tay190] George Taylor, P Davies, Mike Farmwald. The

TLB slice a low-cost high-speed address translation

mechanism. In The 17th Annual International Symposium

on Computer Architecture. May 1990. pp. 355-363.

48

TLB Overhead Percentage
45

39
19

❑ UX-SW-IPT4X-1 W ❑ uX-sW-tipT4X-1 W R u)(-HW-tipT4X-1 W

Graph 1

HPT cache miss rate vs size

‘0 ~

n

t

❑ ASM-HW-HPT.25X-1W❑ ASM-HW-HPT.5X-1W
❑ ASM-HW-HPT1x-1 W ❑ ASM-HW-HPT2X-1 W

Graph 3

TLB Overhead Percentage

IT

B.tch-rn p-s OLTP t.mps 0LTP2-mw OLTPSmw

NiX-SW-lPT2x-l w EliX-SW-HPT2X-l w

IZJX-HW-HPT2X-1W

Graph 2

Original IPT vs HPT

❑ UX-SW-IPT4X-1 w ❑ U)(-SW-HPT4X-1 W

❑ UX-HW-HPT4X-1w E! UX-HW-HPT2X-2W

Graph 4

49

HPT vs Forward Mapped

❑ ASM-SW-FMPT ❑ ASM-HW-FMPT
❑ ASM-HW-HPT.5X-1 w is UX-HW-HPT4X-1 w

Graph 5

Front Bucket Hit Rates

n

TLB Mice rate ve sharing model

am.w -. O-w,?.

FWSMRGLOW

Graph 6

Front bucket miss rate

NASM-HW-HPTIX-Iw E ux-Hw-HpT2x-2w ❑ ASM-HW-HPT.25X-1W❑ ASM-Hw-HpT.5X-lW
❑ UX-HW-HPT4X-1 w ❑ iX-HW-HPT2x-l w EASM-HW-HPTIX-lW f?iJASM-HkV-HPT2X-lW

Graph 7 Graph 8

50

