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Problem e Regular crawls yield a sequence of consecutive
web graphs G, ..., Gp.

e Scarch engines crawl the Web on a regular ba-
sis to create web graphs (~100B vertices,~1T
edges).

e Similarity scores between any graphs G;_1 and
(G, viewed on time axis create a time series.

e Use time series to define a similarity thresh-
old that indicates minimum similarity be-
tween consecutive anomaly-free web graphs.

e Anomalies: Factors that may result in web
oraphs with poor Web represenation.

e Anomalies can have a significant impact on the
search results, e.g.. they can affect ranking.

e Anomaly detection is difficult because of the
lack of a “pertect” web graph to compare with 05
and the large size of web graphs.
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e We suggest 5 similarity metrics to quantify the
differences between two web graphs.

e We present an extensive experimental evalua-
tion of our approach and the different similarity
metrics.

Similarity Metrics

Vertex/Edge Overlap

Potential AHOm alies Jaccard Index between vertex or/and edge sets.
Vector Similarity

Distance of adjacency matrices principal eigen-
vectors.

Missing Connected Subgraph

E.g. host i labl | time. :
.. a web host is unavailable at crawl time Vertex Ranking

Rank correlation between sorted (by Pagerank)
vertex lists.

Sequence Similarity

e Convert graphs to vertex sequences.

e Calculate ratio of common subsequences |1].

Missing Random Vertices Signature Similarity

E.g., disk failures in web graph storage machines.
e Get graphs fingerprints using LSH |2, 3].

e Calculate Hamming distance-based similarity.
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Experimental Results

We used real web graphs generated by Yahoo!
over a month long period in 2007.

Definition of Similarity Threshold

We studied how web graph similarity varies over
time for the different metrics to define a similarity
threshold for each metric.
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Vertex/Edge Overlap. Sequence Similarity.

Similarity Metrics Evaluation

We selected consecutive graphs Ga, Gb and simu-
lated anomalies to G to create corrupted versions
GV We used all different similarity metrics and
tried to identify the anomalies using the similar-
ity score between Ga, Gb' and the corresponding
similarity threshold of each algorithm.
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Missing Connected Subgraph Simulation

Signature Similarity outperforms other metrics.

Missing Missing  Topological
Subgraph Vertices Changes

Vertex/Edge Overlap vv v x
Vector Similarity vv v v
Vertex Ranking vv x x
Sequence Similarity v x vv
Signature Similarity vv vv vv
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