Background: Functional Dependencies

- We are always talking about a relation R, with a fixed schema (set of attributes) and a varying *instance* (set of tuples).
- Conventions: A, B, ... are attributes; ..., Y, Z are sets of attributes. Concatenation means union.
- FD is $X \to Y$, where X and Y are sets of attributes. Two tuples that agree in all attributes of X must agree in all attributes of Y.
- Implication: FD X → Y follows from F iff all relation instances that satisfy F also satisfy X → Y.

Three Ways to Reason About FD's

- 1. Semantic: FD $X \to Y$ is the set of relation instances that satisfy it.
 - Say $\mathcal{F} \models X \to Y$ if every instance that satisfies all FD's in \mathcal{F} also satisfy $X \to Y$.
 - All approaches assume there is a fixed relation scheme R to which the FD's pertain.
- 2. Algorithmic: Give an algorithm that tells us, given \mathcal{F} and $X \to Y$, whether $\mathcal{F} \models X \to Y$.
- 3. Logical: Give a reasoning system that lets us deduce an FD like $X \to Y$ exactly when $\mathcal{F} \models X \to Y$.
 - Deduction indicated by $\mathcal{F} \vdash X \to Y$.

Closure Test for Implication (Algorithmic Approach)

Start with $X^+ = X$. Adjoin V to X^+ if $U \to V$ is in \mathcal{F} , and $U \subseteq X^+$. At end, test if $Y \subseteq X^+$.

- Proof that if $Y \subseteq X^+$, then $\mathcal{F} \models X \to Y$: Easy induction on the number of additions to X^+ that $X \to A$ for all A in X^+ .
- Proof that if *F* implies X → Y, then Y ⊆ X⁺: Prove the contrapositive; assume Y is not a subset of X⁺ and prove *F* does not imply X → Y. Construct relation R with two tuples that agree on X⁺ and disagree elsewhere.

Armstrong's Axioms (Logical Approach)

A sound (what may be deduced is correct in the \models sense) and complete (what is true in the \models sense can be deduced) axiomatization of FD's.

- A1: Trivial FD's or Reflexivity. $X \to Y$ always holds if $Y \subseteq X$.
- A2: Augmentation. If $X \to Y$, then $XZ \to YZ$ for any set of attributes Z.
- A3: Transitivity. If $X \to Y$ and $Y \to Z$, then $X \to Z$.

Deductive Proofs

A series of "lines." Each line is either:

- 1. A given statement (FD in the given set \mathcal{F} for deductions about FD's), or
- 2. A statement that follows from previous lines by applying an axiom.

Example

Given $\{AB \to C, CD \to E\}$, deduce $ABD \to E$.

 $AB \rightarrow C$ (Given) $ABD \rightarrow CD$ (A2) $CD \rightarrow E$ (Given) $ABD \rightarrow E$ (A3)

Proof of Soundness

Easy observations about relations.

Proof of Completeness

- 1. Given \mathcal{F} , show that if A is in X^+ , then $X \to A$ follows from \mathcal{F} by AA's.
- 2. Show that if $X \to A_1, \ldots, X \to A_n$ follow from AA's, then so does $X \to A_1 \cdots A_n$.
- 3. Complete the proof by observing that $X \to A_1 \cdots A_n$ follows from \mathcal{F} iff all of A_1, \ldots, A_n are in X^+ , and therefore iff $X \to A_1 \cdots A_n$ follows by AA's.

Proof (2)

Induction on *i* that $X \to A_1 \cdots A_i$ follows.

• Basis: i = 1, given.

- Induction: Assume $X \to A_1 \cdots A_{i-1}$.
 - $X \to XA_1 \cdots A_{i-1}$ (A2 by X applied to $X \to A_1 \cdots A_{i-1}$).
 - $XA_1 \cdots A_{i-1} \to A_i \ (A2 \ by \ A_1 \cdots A_{i-1} \ applied to \ X \to A_i).$
 - ♦ $X \to A_1 \cdots A_i$ (A3 applied to previous two FD's).

Proof (1)

Induction on the number of steps used to add A to X^+ .

- Basis: 0 steps. Then A is in X, and $X \to A$ by A1.
- Induction: Assume $B_1 \cdots B_k \to A$ in \mathcal{F} used to add A to X^+ .
 - By the inductive hypothesis, $X \to B_j$ follows from \mathcal{F} for all $1 \le j \le k$.

 - By A3, $X \to A$ follows.

Background: Normal Forms

- A key for R is a minimal set of attributes such that X → R (note: I use R as both the instance and schema of a relation — shame on me). A superkey is any superset of a key.
- BCNF: If $X \to Y$ holds for R and is nontrivial, then X is a superkey.
- 3NF: If $X \to Y$ holds for R and is nontrivial, then either X is a superkey or Y contains a *prime* attribute (member of some key).
- Decomposition: We can decompose R into schemas S_1, \ldots, S_n if $S_1 \cup \cdots \cup S_n = R$. The instance for S_i is $\pi_{S_i}(R)$. The FD's that hold for S_i are those $X \to Y$ such that $XY \subseteq S_i$ and $X \to Y$ follows from the given FD's for R.

Covers of Sets of FD's

- Sets \mathcal{F}_1 and \mathcal{F}_2 of FD's are *equivalent* if each implies the other.
 - I.e., exactly the same relation instances satisfy each.

- Any set of FD's equivalent to \mathcal{F} is a *cover* for \mathcal{F} .
- A cover is *minimal* if:
- 1. No right side has more than one attribute.
- 2. We cannot delete any FD from the cover and have an equivalent set of FD's.
- 3. We cannot delete any attribute from any left side and have an equivalent set of FD's.

Example

Relation CTHRSG represents courses, teachers, hours, rooms, students, and grades. The FD's: $C \rightarrow T$; $HR \rightarrow C$; $HT \rightarrow R$; $HS \rightarrow R$; $CS \rightarrow G$; $CH \rightarrow R$.

- We can eliminate $CH \rightarrow R$.
 - Proof: Using the other 5 FD's, $CH^+ = CHTR$.
- Having done so, we cannot eliminate any attribute from any left side.
 - Sample proof: Suppose we tried to eliminate T from HT → R. We would need that C → T, HT → R, HR → C, HS → R, and CS → G imply H → R. But H⁺ = H with respect to these 5 FD's.
- Thus the remaining five are a minimal cover of the original six.
- Note: minimal cover need not be unique, or even have the same number of FD's.

Lossless Join

The decomposition of R into S_1, \ldots, S_n has a *lossless join* (with respect to some constraints on R) if for any instance r of R that satisfies the constraints:

$$\pi_{S_1}(r) \bowtie \cdots \bowtie \pi_{S_n}(r) = r$$

• Motivation: We can replace R by S and T, knowing that the instance of R can be recovered from the instances of S and T.

$\mathbf{Theorem}$

A decomposition of R into S and T has a lossless join wrt FD's \mathcal{F} if and only if $S \cap T \to S$ or $S \cap T \to T$.

\mathbf{Proof}

- First note that $r \subseteq \pi_S(r) \bowtie \pi_T(r)$ always.
- Assume $S \cap T \to S$ and show that

 $\pi_S(r) \bowtie \pi_T(r) \subseteq r$

- Suppose s is in $\pi_S(r)$ and t is in $\pi_T(r)$, and s and t join (i.e., they agree in $S \cap T$).
- Then t is the projection of a tuple t' of r that agrees with s on S.
- So t' agrees with t on T and with s on S, so t' is $s \bowtie t$; i.e., $s \bowtie t$ is in r.
- Similarly if $S \cap T \to T$.
- Now assume neither FD follows from \mathcal{F} .
 - ◆ Then there is an instance r consisting of two tuples that agree on (S ∩ T)⁺ and disagree elsewhere. This instance satisfies *F*.
 - Neither S nor T is contained in $(S \cap T)^+$ (or else one of the FD's in question would follow).
 - Thus, r projected and rejoined yields four distinct tuples, and cannot be r.

Theorem

We can always decompose a relation R with FD's \mathcal{F} into BCNF relations with a lossless join.

\mathbf{Proof}

- We decompose when we find a BCNF violation $X \to Y$, into $X \cup Y$ and $(R Y) \cup X$.
- But $((R Y) \cup X) \cap (X \cup Y) = X$. Thus the intersection of the schemas functionally determines one of them, $X \cup Y$.
- To complete the proof, we need to show that when we decompose further, the resulting nrelations have a lossless join, but that is an easy induction on n.

Dependency Preservation

When we decompose R with FD's \mathcal{F} , will \mathcal{F} be equivalent to the union of its projections onto the decomposed relations?

- One way to guarantee dependency preservation is to use a minimal cover, and convert each FD in the cover X → A into the schema XA.
 - But if there are some attributes not mentioned in any FD, make them a schema by themselves.

Theorem

A minimal cover \mathcal{F} yields 3NF relations.

Proof

Suppose XA (the relation from $X \to A$) is not in 3NF, because $Y \to B$ is a 3NF violation.

- We know Y is not a superkey, and B is not prime.
- Case 1: A = B. Then $Y \subset X$. Since $Y \to B$ follows from \mathcal{F} , and $X \to A$ surely follows from $Y \to B$, we know \mathcal{F} is equivalent to $\mathcal{F} - \{X \to A\} \cup \{Y \to B\}.$
 - Then \mathcal{F} was not a minimal cover.
- Case 2: $A \neq B$. Then B is in X.
 - X is surely a superkey for XA, and since B is not prime, B must not be in any key $Z \subseteq X$.
 - Then $(X B) \to A$ can replace $X \to A$ in \mathcal{F} , showing \mathcal{F} is again not minimal.

Decomposition With 3NF, Dependency Preservation and Lossless Join

To the schema from a minimal cover, add a key for the original relation if there is not already some relation schema that is a superkey.

Example

 $R = ABCD; \ \mathcal{F} = \{A \to B, C \to D\}.$

- Start with AB and CD from the FD's.
- Only key for R is AC.
- Thus, DP, LJ, 3NF decomposition is {*AB*, *AC*, *CD*}.

- Proof that the decomposition is always LJ will have to wait for the theory of "generalized dependencies."
 - ♦ This decomposition is obviously LJ, since $AB \bowtie AC$ is lossless because $A \rightarrow B$, and then $ABC \bowtie CD$ is lossless because of $C \rightarrow D$.