
CQ's With Negation

General form of conjunctive query with negation
(CQN):

H :- G1 & ... & Gn &

NOT F1 & ... & NOT Fm

� G's are positive subgoals; F 's are negative

subgoals.

� Apply CQN Q to DB D by considering all
possible substitutions of constants for the
variables of Q. If for some substitution:

1. All the positive subgoals become facts in
D and

2. None of the negative subgoals do,

then infer the substituted head.

� Set of inferred facts is Q(D).

� Containment of CQ's doesn't change: Q1 �
Q2 i� for every database D, Q1(D) � Q2(D).

Example

C1: p(X,Z) :- a(X,Y) & a(Y,Z) &

NOT a(X,Z)

C2: p(A,C) :- a(A,B) & a(B,C) &

NOT a(A,D)

� Intuitively, C1 looks for paths of length 2 that
are not \short-circuited" by a single arc from
beginning to end.

� C2 looks for paths of length 2 that start from
a node A that is not a \universal source"; i.e.,
there is at least one node D not reachable
from A by an arc.

� We thus expect C1 � C2, but not vice-versa.

Levy-Sagiv Test

There is a straightforward, time-consuming test for
Q1 � Q2:

� Create a large-but-�nite family of canonical
DB's that consist of all DB's using only the
constants 1; 2; : : : ; n, where n is the number of
variables in Q1.

1

� Test each canonical DB. If Q1(D) is not
contained in Q2(D) for even one canonical DB
D, then containment of CQ's surely doesn't
hold. Otherwise, we claim that Q1 � Q2.

Proof of L/S Test

� Suppose Q1(D) � Q2(D) for each canonical
DB D, but there is some other DB E, for
which containment doesn't hold. That is,
Q1(E) contains a tuple t that Q2(E) does not
contain.

� Consider the at most n symbols that variables
of Q1 map to when showing that Q1(E)
contains t. We may rename these symbols
1; 2; : : : ; n; the counterexample still holds.

� Let D be the canonical DB consisting of
E restricted to the tuples having only the
symbols 1; 2; : : : ; n.

� Since the L/S test passed, we know that
Q2(D) contains t.

� Since the assignment of Q2's variables that
shows t is in Q2(D) maps variables only to
1; 2; : : : ; n (remember all CQ's are assumed
safe), the same assignment maps the positive
subgoals of Q2 to tuples of E and negative
subgoals of Q2 to tuples not in E.

✦ In proof: note that D and E, after
renaming of symbols, agree on all tuples
that involve only 1; 2; : : :; n. That is,
D and E \look the same" whenever we
assign variables to only 1; 2; : : :; n.

CQ's With Arithmetic

Suppose we allow subgoals with <, 6=, and other
comparison operators.

� We must assume database constants can be
compared.

� Technique is a generalization of the L/S
algorithm, but it is due to Tony Klug.

� We shall work the case where < is a total
order; other assumptions lead to other
algorithms, and we shall later give an all-
purpose technique using a di�erent approach.

2

Example

Consider the rules:

C1: p(X,Z) :- a(X,Y) & a(Y,Z) & X<Y

C2: p(A,C) :- a(A,B) & a(B,C) & A<C

� Both ask for paths of length 2. But Q1

requires that the �rst node be numerically less
than the second, while Q2 requires that the
�rst node be numerically less than the third.

Klug/Levy/Sagiv Test

Construct a family of canonical databases by
considering all partitions of the variables of Q1

(assuming we are testing Q1 � Q2), and ordering
the partitions.

� To represent canonical DB's assign the �rst
partition the value 0, the second the value 1,
and so on.

Example

To test C1 � C2:

C1: p(X,Z) :- a(X,Y) & a(Y,Z) & X<Y

C2: p(A,C) :- a(A,B) & a(B,C) & A<C

we need to consider the partitions of fX;Y; Zg and
order them.

� The number of ordered partitions is 13.

✦ For partition fXgfY gfZg we have 3! = 6
possible orders of the blocks.

✦ For the three partitions that group two
variables and leave the other separate we
have 2 di�erent orders.

✦ For the partition that groups all three,
there is one order.

� In this example, the containment test fails.
We have only to �nd one of the 13 cases to
show failure.

� For instance, consider fX;ZgfY g. The
canonical database D for this case is
fa(0; 1); a(1; 0)g, and since X < Y , the body
of C1 is true.

� Thus, C1(D) includes p(0; 0), the frozen head
of C1.

3

� However, no assignment of values to A, B, and
C makes all three subgoals of C2 true, when D
is the database.

� Thus, p(0; 0) is not in C2(D), and D is a
counterexample to C1 � C2.

Key Theorems No Longer Hold When Some
Predicates are Interpreted (e.g., Arithmetic
Comparisons)

� Union of CQ's theorem is false.

Example

Consider something we've seen before:

Q1: p(X) :- a(X) & 10�X & X�20
R1: p(X) :- a(X) & 5�X & X�15
R2: p(X) :- a(X) & 15�X & X�25

Q1 � R1 [R2, but neither Q1 � R1 nor Q1 � R2

is true.

� Containment mapping theorem is false.

Example

Q1: panic :- r(U,V) & r(V,U)

Q2: panic :- r(U,V) & U�V

� Note, \panic" is a 0-ary predicate, i.e., a
propositional variable.

✦ 0-ary predicates in the head present
no problems for CQ's but don't make
anything easier either.

� Informally: Q1 = \cycle of length 2"; Q2 =
\nondecreasing arc."

� Thus, Q1 � Q2.

✦ That is, whenever there is a pair of arcs
U ! V and V ! U , surely one is
nondecreasing.

� However, if � is a containment mapping from
Q2 to Q1, there is no subgoal that �(U � V)
can be.

� Hence, no containment mapping from Q2 to
Q1.

Generalizing the Containment-Mapping
Theorem

4

� The Klug/Levy/Sagiv approach uses canonical
databases to handle arithmetic.

� Another approach, due to Ashish Gupta and
Zhang/Ozsoyoglu, uses containment mappings.

✦ It has the advantage of working for any
kind of interpreted (\built-in") predicate,
although we shall use arithmetic
comparisons in our examples.

The G/Z/O Test

To test whether Q1 � Q2, where Q1, Q2 are CQ's
with interpreted predicates:

1. Recti�cation: replace variables and constants
by new variables so that no variable appears
twice among the relational subgoals and the
head. Also, no constant may appear there at
all.

2. Add equality comparisons so the new variables
are equated to the variable or constant they
replace.

Examples

a) Q1 above:

panic :- r(U,V) & r(V,U)

becomes

panic :- r(U,V) & r(X,Y) &

U=Y & V=X

b)

p(X) :- q(X,Y,X) & r(Y,a)

would become:

p(Z) :- q(X,Y,W) & r(V,U) &

X=W & X=Z & Y=V & U=a

G/Z/O Test (Continued)

3. Having modi�ed the CQ's, let M be the set of
all containment mappings from the relational
subgoals of Q2 to the relational subgoals of
Q1.

✦ Note that with all variables appearing
only once, every mapping from subgoals
to subgoals that matches predicates gives
us a containment mapping.

5

� Then Q1 � Q2 i� the interpreted subgoals of
Q1 logically imply the OR, over all � in M , of
� applied to the interpreted subgoals of Q2.

Example

Let

Q1: panic :- r(U,V) & r(X,Y) &

U=Y & V=X

Q2: panic :- r(U,V) & U�V

� Two containment mappings:

1. �1(U) = U ; �1(V) = V . Here, the r(U; V)
subgoal of Q2 maps to the �rst subgoal of
Q1.

2. �2(U) = X; �2(V) = Y . Here, r(U; V) of
Q2 maps to the second subgoal of Q1.

� We must check:

U = Y ^ V = X) �1(U � V) _ �2(U � V)

That is:

U = Y ^ V = X) U � V _ X � Y

� Use equalities U = Y and V = X in the
hypothesis. Su�cient to show:

U � V _ V � U

(Obviously true).

Test For Logical Expressions Involving
Inequalities

� For arbitrary interpreted predicates, we
can only make the necessary test by using
whatever algorithm is appropriate for those
predicates.

� For interpreted predicates that are arithmetic
inequalities, we can use the same test that was
hidden inside the K/L/S test:

✦ Consider all total orders of variables,
including those with equalities.

� If implication holds for each order, then
expression is true, else false.

Example

For the implication above:

U = Y ^ V = X) U � V _ X � Y

6

two possible orders are:

U < V < X < Y

X < U = V < Y

� For this implication, the only orders that
make the hypothesis (U = Y ^ V = X)
true are:

U = V = X = Y

U = Y < V = X

V = X < U = Y

� Conclusion U � V _ X � Y holds for each of
the three orders.

� Test is exponential but works.

Extensions

� Extends to test for a CQ contained in a union
of CQ's. The logical implication includes the
OR over all containment mappings from any
of the CQ's in the union.

� Extends to containment of unions of CQ's:
handle each CQ in the contained unions
separately.

7

