joeqg compiler system

Benjamin Livshits
CS 243

Plan for Today

Joeqg System Overview
Lifecycle of Analyzed Code
Source Code Representation
Writing and Running a Pass

Assignment: Dataflow Framework

1. Background on joeq

e A compiler system for analyzing Java code
o Developed by John Whaley and others
« Used on a daily basis by the SUIF compiler group

« An infrastructure for many research projects: 10+
papers rely on joeq implementations

e Visit http://joeq.sourceforge.net for more...

e Or read http://www.stanford.edu/~jwhaley/papers/ivme03.pdf

joeq Design Choices

Most of the system is implemented in pure Java

Thus, analysis framework and bytecode processors work
everywhere

For the purpose of programming assignment, we treat joeq as a
front- and middle end
But it can be used as a VM as well

System-specific code is patched in when the joeq system compiles itself
or its own runtime

These are ordinary C routines
Systems supported by full version: Linux and Windows under x86

joeq Components

Full system is very large: Synchronization

~100,000 lines of code T

Allocator Class Library

Bootstrapper Compiler (Bytecode)

Classfile structure Debugger

Compiler (Quad) Bytecode Interpreters

Garbage Collector (ke

Quad Interpreters Reflection support

Memory Access e Scheduling

Safe/Unsafe barriers e UTF-8 Support

We restrict ourselves to only the compiler and classfile routines,

which is closer to 40,000 lines of code

Starting at the Source

Lifecycle of Analyzed Code

Everything begins as source code

A very “rich” representation
o Good for reading

o Hard to analyze

Lots of high-level concepts here with (probably) no counterparts in the
hardware

Virtual function calls

Direct use of monitors and condition variables
Exceptions

Reflection

Anonymous classes

Threads

Source to Bytecode

e javac or jikes compiles source into a machine-
independent bytecode format

o This still keeps the coarse structure of the program
« Each class is a file
« Split up into methods and fields

« The bytecodes themselves are stored as a member attribute in
methods that have them

« Bytecoded instructions are themselves high level:
invokevirtual
monitorenter

arraylength

Analysis and Source Code

Because so much of the code structure stays in the classfile format,
there's no need for Java analyzers to bother with source code at all

Moreover, bytecode is indifferent to language changes

Reading in code:
joeq searches through the ordinary classpath to find and load requested files

Each source component in the classfile has a corresponding object representing
it:

jg_Class

jg_Method

etc.

Method bodies are transformed from bytecode arrays to more convenient
representations:

more on this later

How Source Code is
Represented within joeg

Source Code Representation

e joeq is designed primarily to work with Java

o Operates at all levels of abstraction
Types/Classes
« Has classes corresponding to each language component

e Relevant packages in joeq

« joeq.Class package: classes that represent Java source Fields/Methods
components (classes, fields, methods, etc.) reside in joeq's

Compil3r.BytecodeAnalysis package: analysis of Java

bytecode Basic blocks

Compil3r.Quad package: Classes relevant to joeq's internal
“quad” format

e Be careful with your imports:

« avoid name conflicts with java.lang.Class and
java.lang.Compiler classes

joeq.Class: Types and Classes

jg_Type: Corresponds to any Java type

jg_Primitive: subclass of jg_Type. Its elements (all static
final fields with names like jg_Primitive.INT) represent
the primitive types

jg_Array: array types. Multidimensional arrays have a
component type that is itself a jg_Array

jg_Class: A defined class

... all located in package

joeq.Class: Fields and Methods

e Subclasses of jg_Field and jg_Method, respectively

« Class hierarchy distinguishes between instance and class (static)
members, but this detail is generally hidden from higher
analyses

e These classes know about their relevant types: who
declares them, parameter/return types, etc.

e Names of members are stored as UTF.Utf8 objects, so
you'll need to convert them with toString() to get any
use out of them!

Analyzing Bytecode

e The Java Virtual Machine stores program code
as bytecodes that serve as instructions to a
stack machine of sorts

e Raw material for all analysis of Java code

e Preserves vast amounts of source information:

« Java decompilers can almost perfectly reconstruct
source, down to variable names and line numbers

Example of Java Bytecode

int test (int);

class ExprTest ({
: - Code:
int test (int a) { iload_1
b, c, d’ e, f; : bipush 10
a + 10; e

istore_3
a + c; iload_1
iload_3
if (£ > 2){ e
istore 6
iload 6
iconst_2
if icmple
iload 6
return f£f; : iload 3
isub
istore 6
iload 6

ireturn

javac test.java

javap -c ExprTest

Bytecode Details

The implied running model of the Java Virtual Machine is that of a
stack machine - there are local variables that correspond to
registers, and a stack where all computation occurs.

o This is hard to analyze!

Fortunately, the JVM requires that bytecode pass strict typechecking
and stack consistency checking

Gosling Property: At each instruction, the types of every element
on the stack, and every local variable, are all well defined

By extension, the stack must have a specific height at each program
point

Converting Bytecodes to Quads

joeq thus converts bytecodes to something closer to standard three-address
code, called "Quads"

The highly abstract bytecode instructions for the most part have direct
counterparts in the Quad representation

One operator, up to four operands
OPERATOR OP1 OP2 OP3 OP4

Approximately 100 operators, all told (filed into a dozen or so rough
categories), about 15 varieties of operands

Full details on these and the methods appropriate to them on the course
website's joeq documentation:

o http://suif.stanford.edu/~courses/cs243/joeq/

Operators

e Types of operators
o Primitive operations: Moves, Adds, Bitwise AND, etc.
« Memory access: Getfields and Getstatic
o Control flow: Compares and conditional jumps, JSRs

« Method invocation: OO and traditional

e Operators have suffixes indicating return type:
ADD_I adds two integers.

L, F, D, A, and V refer to longs, floats, doubles, references, and voids
respectively

Operators may have _DYNLINK (or %) appended, which means that a new class
may need loading at that point

Operands

e Operands are split into 15 types

The ConstOperand classes (I, F, A, etc.) indicate
constant values of the relevant type

RegisterOperands name pseudo-registers

MethodOperands and ParamListOperands are used to
identify method targets

TypeOperands are passed to type-checking operators,
or to "new" operators

TargetOperands indicate the target of a branch

Converting a Method to Quads

BBO (ENTRY) (in: <none>, out: BB2)
BB2 (in: BBO (ENTRY), out: BB3, BB4)
ADD I TO int, Rl int, IConst: 10

MOVE_T R3 int, TO int

MOVE_TI R6 int, TO int

1
2
3 ADD I TO int, R1l int, R3 int
4
5

IFCMP I R6 int, IConst: 2, LE, BB4
BB3 (in: BB2, out: BB4)
6 SUB_I TO int, R6 int, R3 int
7 MOVE_I R6 int, TO int
BB4 (in: BB2, BB3, out: BBl (EXIT))
8 RETURN_I R6 int

BBl (EXIT) (in: BB4, out: <none>)

Exception handlers: []
Register factory: Local: (I=7, F=7, L=7, D=7, A=T7)

Stack: (I=2, F=2, L=2, D=2, A=2)

Control Flow and CFGs

e The class Compil3r.Quad.ControlFlowGraph encapsulates
most of the information we'll ever need for our analyses

o There's a a ControlFlowGraph in Compil3r.BytecodeAnalysis too,
so be careful about your imports

e These are generated from jg_Methods by the underlying
system's machinery (the CodeCache class) -- we use
them to make QuadlIterators

e (which we'll get to later)

Basic Blocks

e Raw components of Control Flow Graphs

e These know about their predecessors, successors, a list
of Quads they contain, and information about exception

handlers
« Which ones protect this basic block

« Which blocks this one protects

e Traditional BB semantics are violated by exceptions:

« if an exception occurs, there is a jump from the middle of a
basic block

« We will ignore this subtlety

Safety Checks

e Java's safety checks are /implicit: various instructions that
do computation can also throw exceptions

e Joeq's safety checks are explicit: arguments have their
values tested by various operators like NullCheck and
BoundsCheck

« Exceptions are thrown if checks fail

e When converting from bytecodes to quads, all necessary
checks are automatically inserted

Iterating Over the Quads: QuadIterator

Dealing with control flow graphs or basic blocks directly becomes tedious quickly
Dealing with individual quads tends to miss the forest for the trees

Simple interface to iterate through all the quads in reverse post-order, and provides
immediate predecessor/successor data on each quad

jg Method m = ...

ControlFlowGraph cfg = CodeCache.getCode (m) ;
QuadIterator iter = new QuadIterator (cfg)
while (iter.hasNext ()) {

Quad quad = (Quad)iter.next();

if (quad.getOperator () instanceof Operator.Invoke) ({

processCall (cfg.getMethod (), quad);

Developing a joeq
Compiler Pass

4. Writing and Running a Pass

e Passes themselves are written in Java,
implementing various interfaces Joeq provides

e Passes are invoked through library routines in
the Main.Helper class

o Useful classes to import: Clazz.*,
Compil3r.Quad.*, Main.Helper, and possibly
Compil3r.Quad .Operator.* and
Compil3r.Quad.Operand.*

The Main.Helper Class

e Main.Helper provides a clean interface to the
complexities of the joeq system

« load(String) takes the name of a class provides the
corresponding jg_Class

o runPass(target, pass) lets you apply any pass to a
target that's at least that big

e S0, how do we write a pass?

Visitors Iin joeq

joeq makes heavy use of the visitor design pattern

The visitor for a level of the code hierarchy has methods
visitFoo(code object) for each type of object that level can take

For some cases, you may have overlapping types (e.g., visitStore

and visitQuad) -- the methods will be called from most-general to
least-general

Visitor interfaces with more than one method have internal abstract
classes called "EmptyVisitor"

Visitors are described in detail in "Design Patterns” by Gamma et al.

Visitors: Some Examples

public class QuadCounter extends QuadVisitor.EmptyVisitor ({
public int count = 0;
public void wvisitQuad (Quad q) {

count++;

public class LoadStoreCounter extends QuadVisitor.EmptyVisitor (
public int loadCount = 0, storeCount = 0;
public void visitLoad(Quad q) { loadCount++;}

public void visitStore (Quad q) { storeCount++;}

Running a Pass

public class RunQuadCounter ({
public static void main (String[] args) {

jq Class[] c = new jg Class[args.length];

for(int i = 0; i < args.length; i++) {
c[i] = Helper.load(args[i]);

}

QuadCounter gc = new QuadCounter () ;

for(int i = 0; i < args.length; i++) {
gc.count = 0;
Helper.runPass(c[i], qc);
System.out .println (

c[i] .getName() + ™ has ™ +

gc.count + “ Quads.”);

Summary

We're using the Joeq compiler system
Review of Java VM's code hierarchy
Review of Joeq's code hierarchy
QuadlIterators

Main.Helper

Visitor pattern

Defining and running passes

Programming Assignment 1

Your assignment is to implement a basic dataflow framework
using joeq

We will provide the interfaces that your framework must support

You will write the iterative algorithm for any analysis matching these
interfaces, and also phrase Reaching Definitions in terms that any
implementation of the solver can understand

« A skeleton and sample analysis are available in
Jusr/class/cs243/dataflow

Flow.java contains the interfaces and the main program

ConstantProp.java contains classes that define a limited constant
propagation algorithm

Flow.Analysis Interface

| m tesk. java |m Liveness.java

EE Outline 5 ™ |

m ConstantProp.java [7] Flow.java &2 .classpath | .project
12

* instead of the normal kinds.

azlghs e % ¥
0 2 = @Q Flow

21 3 3 ° pataflowobject
public static interface Aknalysis { Em(’sﬂndwh

" - @ preprocessiControlFlow 1.

You implement

the solver and

* hnalysis-specific customization. You can use these to precompute
* walues or output results, if you wish.
e

void preprocess(ControlFlowGraph cfg):

void postprocess (ControlFlowGraph cfg)

/* Iz this a forward dataflow analysis? */
hoolean isForward():

FE
* Routines for interacting with dataflow waluss. ¥You may assume that
* the guad passed in is part of the relewvant CFG.
=

Dataflowdbject getEntry();

DataflowObject getExit(): Type hierarchy of 'Flow.Analysis":

@
B° solver

@
@
@
@
@
@ getout{Quad)
@
@
@
@
@

postprocessiControlFlot
isForward()

getEntryi)

getExit()

getIn{Cuad)

setIn{Quad, Datafowo
setQut{Quad, Dataflow
setEntry(DataflowObie
setExit{DataflowObject
newTempyar()
processQuad({Quad)

ot main{3tring[1)

DataflowObiect gerlIn(Quad o) ;
=143 ¥ analysis - Flow

Dataflowdbject getOut (Quad o)
Liveness - {default package)

woid setIn(Quad o, Dataflowdbjiect walue):

woid setdut (Quad g, Dataflowlbject walue):;

roid setEntry(Dataflowlbiect wvalue):

vroid setExit (Dataflowdbiject walue):

DataflowObject newTempWar () :

i

g ConstantProp - {default package)

* Ahetually perform the transfer operation on 1

Press "Ctd+T' to see the Supertype hierarchy

LS
void processQuad(Quad o)

public static interface Solwver extends ControlFlowGraphWVisitor {
void visitCFG(ControlFlowGraph cfg)

void registerinalysis(inalysis a);

2. reaching definitions

Test it first on the
provided input

Compare the output
with the canonical
one

Be careful when
writing your code

We will throw more
test cases at it

