
joeq compiler system

Benjamin Livshits

CS 243

Plan for Today

1. Joeq System Overview

2. Lifecycle of Analyzed Code

3. Source Code Representation

4. Writing and Running a Pass

5. Assignment: Dataflow Framework

1. Background on joeq

• A compiler system for analyzing Java code

� Developed by John Whaley and others

� Used on a daily basis by the SUIF compiler group

� An infrastructure for many research projects: 10+

papers rely on joeq implementations

• Visit http://joeq.sourceforge.net for more…

• Or read http://www.stanford.edu/~jwhaley/papers/ivme03.pdf

joeq Design Choices

• Most of the system is implemented in pure Java

• Thus, analysis framework and bytecode processors work

everywhere

• For the purpose of programming assignment, we treat joeq as a

front- and middle end

• But it can be used as a VM as well

� System-specific code is patched in when the joeq system compiles itself

or its own runtime

� These are ordinary C routines

� Systems supported by full version: Linux and Windows under x86

joeq Components

• Full system is very large:

~100,000 lines of code

• Allocator

• Bootstrapper

• Classfile structure

• Compiler (Quad)

• Garbage Collector

• Quad Interpreters

• Memory Access

• Safe/Unsafe barriers

• Synchronization

• Assembler

• Class Library

• Compiler (Bytecode)

• Debugger

• Bytecode Interpreters

• Linkers

• Reflection support

• Scheduling

• UTF-8 Support

We restrict ourselves to only the compiler and classfile routines,

which is closer to 40,000 lines of code

Starting at the Source

Lifecycle of Analyzed Code

• Everything begins as source code

• A very “rich” representation

� Good for reading

� Hard to analyze

• Lots of high-level concepts here with (probably) no counterparts in the

hardware

� Virtual function calls

� Direct use of monitors and condition variables

� Exceptions

� Reflection

� Anonymous classes

� Threads

Source to Bytecode

• javac or jikes compiles source into a machine-

independent bytecode format

• This still keeps the coarse structure of the program

� Each class is a file

� Split up into methods and fields

� The bytecodes themselves are stored as a member attribute in

methods that have them

� Bytecoded instructions are themselves high level:

• invokevirtual

• monitorenter

• arraylength

Analysis and Source Code

• Because so much of the code structure stays in the classfile format,

there's no need for Java analyzers to bother with source code at all

• Moreover, bytecode is indifferent to language changes

• Reading in code:

1. joeq searches through the ordinary classpath to find and load requested files

2. Each source component in the classfile has a corresponding object representing

it:

• jq_Class

• jq_Method

• etc.

• Method bodies are transformed from bytecode arrays to more convenient

representations:

� more on this later

How Source Code is
Represented within joeq

Source Code Representation

• joeq is designed primarily to work with Java

� Operates at all levels of abstraction

� Has classes corresponding to each language component

• Relevant packages in joeq

� joeq.Class package: classes that represent Java source

components (classes, fields, methods, etc.) reside in joeq's

� Compil3r.BytecodeAnalysis package: analysis of Java

bytecode

� Compil3r.Quad package: Classes relevant to joeq's internal

“quad” format

• Be careful with your imports:

� avoid name conflicts with java.lang.Class and

java.lang.Compiler classes

Types/Classes

Fields/Methods

Basic blocks

Instructions

joeq.Class: Types and Classes

• jq_Type: Corresponds to any Java type

• jq_Primitive: subclass of jq_Type. Its elements (all static

final fields with names like jq_Primitive.INT) represent

the primitive types

• jq_Array: array types. Multidimensional arrays have a

component type that is itself a jq_Array

• jq_Class: A defined class

• … all located in package

joeq.Class: Fields and Methods

• Subclasses of jq_Field and jq_Method, respectively

� Class hierarchy distinguishes between instance and class (static)

members, but this detail is generally hidden from higher

analyses

• These classes know about their relevant types: who

declares them, parameter/return types, etc.

• Names of members are stored as UTF.Utf8 objects, so

you'll need to convert them with toString() to get any

use out of them!

Analyzing Bytecode

• The Java Virtual Machine stores program code

as bytecodes that serve as instructions to a

stack machine of sorts

• Raw material for all analysis of Java code

• Preserves vast amounts of source information:

� Java decompilers can almost perfectly reconstruct

source, down to variable names and line numbers

Example of Java Bytecode

class ExprTest {

int test(int a){

int b, c, d, e, f;

c = a + 10;

f = a + c;

if(f > 2){

f = f - c;

}

return f;

}

}

• javac test.java

• javap -c ExprTest

int test(int);

Code:

0: iload_1

1: bipush 10

3: iadd

4: istore_3

5: iload_1

6: iload_3

7: iadd

8: istore 6

10: iload 6

12: iconst_2

13: if_icmple 22

16: iload 6

18: iload_3

19: isub

20: istore 6

22: iload 6

24: ireturn

Bytecode Details

• The implied running model of the Java Virtual Machine is that of a

stack machine - there are local variables that correspond to

registers, and a stack where all computation occurs.

� This is hard to analyze!

• Fortunately, the JVM requires that bytecode pass strict typechecking

and stack consistency checking

• Gosling Property: At each instruction, the types of every element

on the stack, and every local variable, are all well defined

• By extension, the stack must have a specific height at each program

point

Converting Bytecodes to Quads

• joeq thus converts bytecodes to something closer to standard three-address

code, called "Quads"

• The highly abstract bytecode instructions for the most part have direct

counterparts in the Quad representation

• One operator, up to four operands

OPERATOR OP1 OP2 OP3 OP4

• Approximately 100 operators, all told (filed into a dozen or so rough

categories), about 15 varieties of operands

• Full details on these and the methods appropriate to them on the course

website's joeq documentation:

� http://suif.stanford.edu/~courses/cs243/joeq/

Operators

• Types of operators

� Primitive operations: Moves, Adds, Bitwise AND, etc.

� Memory access: Getfields and Getstatic

� Control flow: Compares and conditional jumps, JSRs

� Method invocation: OO and traditional

• Operators have suffixes indicating return type:

� ADD_I adds two integers.

� L, F, D, A, and V refer to longs, floats, doubles, references, and voids

respectively

� Operators may have _DYNLINK (or %) appended, which means that a new class

may need loading at that point

Operands

• Operands are split into 15 types

� The ConstOperand classes (I, F, A, etc.) indicate

constant values of the relevant type

� RegisterOperands name pseudo-registers

� MethodOperands and ParamListOperands are used to

identify method targets

� TypeOperands are passed to type-checking operators,

or to "new" operators

� TargetOperands indicate the target of a branch

Converting a Method to Quads

BB0 (ENTRY) (in: <none>, out: BB2)

BB2 (in: BB0 (ENTRY), out: BB3, BB4)

1 ADD_I T0 int, R1 int, IConst: 10

2 MOVE_I R3 int, T0 int

3 ADD_I T0 int, R1 int, R3 int

4 MOVE_I R6 int, T0 int

5 IFCMP_I R6 int, IConst: 2, LE, BB4

BB3 (in: BB2, out: BB4)

6 SUB_I T0 int, R6 int, R3 int

7 MOVE_I R6 int, T0 int

BB4 (in: BB2, BB3, out: BB1 (EXIT))

8 RETURN_I R6 int

BB1 (EXIT) (in: BB4, out: <none>)

Exception handlers: []

Register factory: Local: (I=7, F=7, L=7, D=7, A=7)

Stack: (I=2, F=2, L=2, D=2, A=2)

Control Flow and CFGs

• The class Compil3r.Quad.ControlFlowGraph encapsulates

most of the information we'll ever need for our analyses

� There's a a ControlFlowGraph in Compil3r.BytecodeAnalysis too,

so be careful about your imports

• These are generated from jq_Methods by the underlying

system's machinery (the CodeCache class) -- we use

them to make QuadIterators

• (which we'll get to later)

Basic Blocks

• Raw components of Control Flow Graphs

• These know about their predecessors, successors, a list

of Quads they contain, and information about exception

handlers

� Which ones protect this basic block

� Which blocks this one protects

• Traditional BB semantics are violated by exceptions:

� if an exception occurs, there is a jump from the middle of a

basic block

� We will ignore this subtlety

Safety Checks

• Java's safety checks are implicit: various instructions that

do computation can also throw exceptions

• Joeq's safety checks are explicit: arguments have their

values tested by various operators like NullCheck and

BoundsCheck

� Exceptions are thrown if checks fail

• When converting from bytecodes to quads, all necessary

checks are automatically inserted

Iterating Over the Quads: QuadIterator

• Dealing with control flow graphs or basic blocks directly becomes tedious quickly

• Dealing with individual quads tends to miss the forest for the trees

• Simple interface to iterate through all the quads in reverse post-order, and provides

immediate predecessor/successor data on each quad

jq_Method m = ...

ControlFlowGraph cfg = CodeCache.getCode(m);

QuadIterator iter = new QuadIterator(cfg)

while(iter.hasNext()) {

Quad quad = (Quad)iter.next();

if(quad.getOperator() instanceof Operator.Invoke) {

processCall(cfg.getMethod(), quad);

}

}

Developing a joeq
Compiler Pass

4. Writing and Running a Pass

• Passes themselves are written in Java,

implementing various interfaces Joeq provides

• Passes are invoked through library routines in

the Main.Helper class

• Useful classes to import: Clazz.*,

Compil3r.Quad.*, Main.Helper, and possibly

Compil3r.Quad.Operator.* and

Compil3r.Quad.Operand.*

The Main.Helper Class

• Main.Helper provides a clean interface to the

complexities of the joeq system

� load(String) takes the name of a class provides the

corresponding jq_Class

� runPass(target, pass) lets you apply any pass to a

target that's at least that big

• So, how do we write a pass?

Visitors in joeq

• joeq makes heavy use of the visitor design pattern

• The visitor for a level of the code hierarchy has methods

visitFoo(code object) for each type of object that level can take

• For some cases, you may have overlapping types (e.g., visitStore

and visitQuad) -- the methods will be called from most-general to

least-general

• Visitor interfaces with more than one method have internal abstract

classes called "EmptyVisitor"

• Visitors are described in detail in “Design Patterns” by Gamma et al.

Visitors: Some Examples

public class QuadCounter extends QuadVisitor.EmptyVisitor {

public int count = 0;

public void visitQuad(Quad q){

count++;

}

}

public class LoadStoreCounter extends QuadVisitor.EmptyVisitor {

public int loadCount = 0, storeCount = 0;

public void visitLoad(Quad q){ loadCount++;}

public void visitStore(Quad q){ storeCount++;}

}

Running a Pass

public class RunQuadCounter {

public static void main(String[] args){

jq_Class[] c = new jq_Class[args.length];

for(int i = 0; i < args.length; i++){

c[i] = Helper.load(args[i]);

}

QuadCounter qc = new QuadCounter();

for(int i = 0; i < args.length; i++){

qc.count = 0;

Helper.runPass(c[i], qc);

System.out.println(

c[i].getName() + “ has “ +

qc.count + “ Quads.”);

}

}

}

Summary

• We're using the Joeq compiler system

• Review of Java VM's code hierarchy

• Review of Joeq's code hierarchy

• QuadIterators

• Main.Helper

• Visitor pattern

• Defining and running passes

Programming Assignment 1

• Your assignment is to implement a basic dataflow framework

using joeq

• We will provide the interfaces that your framework must support

• You will write the iterative algorithm for any analysis matching these

interfaces, and also phrase Reaching Definitions in terms that any

implementation of the solver can understand

� A skeleton and sample analysis are available in

/usr/class/cs243/dataflow

• Flow.java contains the interfaces and the main program

• ConstantProp.java contains classes that define a limited constant

propagation algorithm

Flow.Analysis Interface

• You implement

1. the solver and

2. reaching definitions

• Test it first on the

provided input

• Compare the output

with the canonical

one

• Be careful when

writing your code

• We will throw more

test cases at it

