
CS145 Written Assignment #5

Due Thursday May 13

You are hired by Mr. Burns to design a personnel database for the Springfield Nuclear Power Plant (SNPP).
After a briefing by Smithers, you quickly came up with the following schema:

Dept(DNo, name, budget)

Emp(SSN, name, salary, DNo)

Mgr(SSN, assistantSSN)

SNPP is divided into multiple departments. Each department has a name and a budget, and is uniquely iden-
tified by a department number (DNo). Each employee has a name and a salary, and is uniquely identified
by a social security number (SSN). Each employee works for exactly one department. Certain employ-
ees are managers. Managers manage the departments they work for, and each manager has exactly one
administrative assistant.

1. Your relational design basically followed the E/R-style translation of the subclass relationship between
managers and employees. Another approach is to use the NULL-style translation of subclasses, and
replace Emp and Mgr with one table AllEmpInfo(SSN, name, salary, DNo, assis-

tantSSN), where assistantSSN is NULL for employees who are not managers.

You explained the tradeoff between the two approaches to Mr. Burns. He absolutely loathed the second
approach because it would store meaningless NULL’s and waste his precious disk space. Nevertheless,
he still wanted to write queries over AllEmpInfo instead of Emp and Mgr! What can you do to
keep your job? (Hint: scene, prospect, extent or range of vision, etc.)

2. There is a relational algebra operator called outerjoin that we have not covered in class. The (full)
outerjoin between two relations and , denoted , is defined as follows: First, we take the
natural join . For each “dangling tuple” in (i.e., a tuple that does not join with any tuple in

), we “pad out” this tuple with NULL’s in those attributes belonging only to , and then add it to the
result. Similarly, for each dangling tuple in , we also pad it with NULL’s and add it to the result. For
example:

: : :
NULL

NULL

In a left outerjoin between and , only the dangling tuples in are padded with NULL’s; in a right
outerjoin between and , only the dangling tuples in are padded with NULL’s.

(a) In Problem #1, AllEmpInfo is really just the left outerjoin between Emp and Mgr. So you
have already figured out how to do a left outerjoin in SQL. Now, given two relations
and , please write the the full outerjoin in SQL.

Please refer to CS145 Course Information Page (http://www.stanford.class/cs145/info.html) for submission
instructions and late policy.

Jun Yang 1 CS145 Spring 1999

(b) (Complete this part if you want to get a “ ” for this assignment.) Is the outerjoin operator
associative? That is, given any three relations , , and , does

always hold? If yes, sketch a simple proof; otherwise, show a counterexample.

3. You are now ready to create the database schema in SNPP’s Megatron 2000 RDBMS. Here are the
basic CREATE TABLE commands:

CREATE TABLE Dept(DNo INTEGER PRIMARY KEY,

name CHAR(30), budget FLOAT);

CREATE TABLE Emp(SSN CHAR(9) PRIMARY KEY,

name CHAR(30), salary FLOAT, DNo INTEGER);

CREATE TABLE Mgr(SSN CHAR(9) PRIMARY KEY,

assistantSSN CHAR(9));

(a) “Assistants to managers are also employees.” Show how to modify the CREATE TABLE com-
mands to encode this referential integrity constraint.

(b) “Each department has a unique name.” Unfortunately, Megatron 2000 does not support UNIQUE
key declarations. Therefore, you need to write an attribute-based check to encode this constraint.

(c) “Those who work in Department 13 have a salary cap of $20,000.” Write a tuple-based check to
encode this constraint.

(d) “If a department has a budget less than $1,000,000, then it must have no more than two man-
agers.” Write a SQL assertion to encode this constraint.

(e) “The guy named Homer Simpson will never get a raise!” Write a trigger to enforce Mr. Burns’
wish.

(f) Just when you are about to enter your schema, Smithers informs you that Megatron 2000 does
not support FOREIGN KEY declarations. To correctly implement the referential integrity con-
straint in (a), which of the following alternatives can you use?

i. An attribute-based check on Mgr.assistantSSN

ii. An attribute-based check on Mgr.assistantSSN together with an attribute-based check
on Emp.SSN

iii. A general assertion

iv. Triggers

For each alternative, if your answer is no, give a short explanation. For (i)–(iii), if your answer
is yes, please also provide an implementation. For (iv), if your answer is yes, please specify all
possible triggering events; however, you do not need to show the full implementation.

4. (Complete this part if you want to get a “ ” for this assignment.) Views in SQL are virtual, meaning
that they are not stored in the database but rather their definitions are used to translate queries refer-
encing views into queries over base relations. One disadvantage of this approach is that views may
effectively be computed over and over again if many queries reference the same view. An alternative
approach is to materialize views: the contents of a view are computed and the result is stored in a
database table, so that a reference to the view in a query can simply access the stored table. However,

To learn more about Megatron 2000, take CS245!

Jun Yang 2 CS145 Spring 1999

when contents of a base relation referenced in the view change, then the contents of the materialized
view must be modified accordingly.

Mr. Burns has asked you to create a materialized view DeptStat showing the number of employees
and their average salary for each department in SNPP. Initially, DeptStat is created and populated
using the following SQL statements:

CREATE TABLE DeptStat(DNo INTEGER PRIMARY KEY,

numEmps INTEGER, avgSal FLOAT);

INSERT INTO DeptStat

(SELECT DNo, COUNT(*), AVG(salary)

FROM Emp

GROUP BY DNo);

Now when we refer to DeptStat in queries we obtain the desired result. Obviously, when Emp is
modified, DeptStat must be modified accordingly. Write a trigger to modify DeptStat after an
INSERT statement is executed on Emp. You may assume that there is a NOT NULL constraint on
Emp.salary. You should try to make your trigger as efficient as possible. Simple recomputation of
the entire DeptStat view is not efficient enough. Hint: Your trigger does not need to access Emp;
it only needs to access the newly inserted tuples and DeptStat itself.

Jun Yang 3 CS145 Spring 1999

