CS109A ML Notes for the Week of 1/16/96

Using ML

ML can be used as an interactive language. We
shall use a version running under UNIX, called

SML/NJ or “Standard ML of New Jersey.”

e You can get SML/NJ by the command sml
on the “elaine’s.”

o It is also possible to run a program without
interaction. Put the program in a file, e.g.
foo and issue the UNIX command

sml <foo

Example: Here is an example of an interaction.
Human-typed things are in the teletype font;
things typed by the machine are in :talic font.

sml
Standard ML of New Jersey, Version 0.93, February 15, 1993
val it = () : unit

5;

val it = 5 :nt
llabcll;

val it = "abe” : string
<ctrl>d

(machine returns to UNIX command level)

e Thenormal response of SML/NJ is val (short
for “value”), followed by it (a special identi-
fier that means “the previously typed expres-
sion”), an equal-sign, the value of the expres-
sion, a colon, and the type of the expression.

e Special case: the first response says that it
has the value (), and its type is unit. The
unit is a special “null type,” whose only pos-
sible value is ().

o We then type the expression 5, followed by
a semicolon. ML responds that the value of
this expression is 5 and 1t is an integer.

O Semicolon must end all expressions.

O SML/NJ gives you a “~” prompt when

it is ready to begin an expression and an

“=" prompt if it is waiting for you to

complete an expression. Often an unex-
pected “=" means you have forgotten the
semicolon.

o We type "abc", and ML tells us this expres-
sion 1s a string with value "abc".

Variables in ML

An ML program operates in a workspace of vari-
ables, much like a C program. We can assign a
value to variables foo and bar by

val foo = 5;
val foo = 5 :nt

val bar = 7;
val bar = 7 : nt

e Remember to use “val” as if saying “the value
of foo 1s 5.7

e ML tells the value of the variable, not “it.”

e We can use variables in expressions, as in
other languages. ML evaluates any expres-
sion it 1s given.

foo + bar;
val it = 12 int

Arithmetic Operators

Usual 4, -, *, /.

e But / is for reals; use div for integers.
e mod gives the remainder of integers.

e ~ denotes unary minus.

Example:
4.0+5.0;
val it = 9.0 : real
30 div 7;
val it = 4 :int
30 mod 7;
val it = 2 :nt
"3%(74);
val it = 12 : nt
e Note that parens (or a space) are needed for
the last example. ML would interpret ~“3+~4

as if *~ were a single operator and complain
that it had never heard of that operator.

Concatenation of Strings

Operator ~ denotes concatenation of strings.

llfooll -~ llbarll

val it = "foobar” : string

Comparison Operators

Asin C, but !'= = <> and == = =.
4<=3;
val it = false : bool

"love" < "war";
val it = true : bool

e Note comparison of strings is lexicographic
(dictionary) order.

e Type bool (Boolean) is the type of the result
of a comparison. This type has only the two
values: true and false.

Logical Operators

&& = andalso; || = orelse; ! = not.
3<4 andalso 5<4;
val it = false : bool

3<4 andalso (not (4<5) orelse 5<6);
val it = true : bool

o Precedences of logical operators relative to
each other and to the arithmetic or compari-
son operators are as in C, with one exception
(not made clear in the book):

O mnot has higher precedence than any
infix operator. Thus, the parens in
“not (4<5)” are essential. Without
them, ML tries to apply not to 4, and
complains that it cannot apply a this
Boolean operator to an integer.

If-Then-Else Operator
if-then-else is used like ?7: in C.

e It is an expression-operator, not a statement
as 1s “if-else” is in C.
if 3<4 then 5 else 6;
val it = 5 :nt

Types

Four basic types: int, real, bool, string.

e Values are denoted as in C, but
O bool has only values true and false.
O real in ML is float in C.

O string is a basic type in ML, not an ar-
ray of characters as in C.

Types Must Agree

ML will figure out the type for most expressions,
using clues such as the types of arguments.

e But there is no automatic coersion, as from
int to float in C.

Example:

3+ 4.0;

std_in:2.1-2.7 Ervor: operator and operand don’t agree (tycon mismatch)
operator domain: int * int
operand: int * real
N eTPression:

+ : overloaded (3,4.0)

ML views every operator as applying to a sin-
gle operand. Even a binary, infix operator is
thought of as applying to a pair, e.g. the pair
(3,4.0) of type int # real.

Many ML operators like # are overloaded,
they can apply to operands of various types,
in the case of * to either a pair of integers, a
pair of reals, or a pair of types.

O Notice that * in addition to its arithmetic
role also is used to build structure-types,
such as pair-types in this example.

When ML sees the 3 and then the *, it as-
sumes that the int # int version of #* is
meant. ML complains when its operand turns
out to be of type int #* real.

I think that the line numbers in SML/NJ er-
ror messages are too high by 1. “std_in:2.1-
2.77 1s supposed to mean that the error occurs
in characters 1-7 of line 2, but in this exam-
ple, there was only one line of input.

Coercion

There are a number of operators that convert from
one type to an “equivalent” value in another type.

See pp. 17-18 and 249-250 of EMLP.

Example:

3.14159 * real(2);
val it = 6.28318 : real

floor(3.14159);
val it = 3 : int
ord("#");

val it = 35 : int

chr(35);
val it = "#7 : string

ML Identifiers

Names of variables in ML may be formed in one
of two ways:

Alphanumeric identifiers, like identifiers in C,
but the apostrophe ’ may also be used as a
letter.

O However, an identifier beginning with °
may only have a type as a value, not an
“ordinary” value.”

Symbolic 1dentifiers are strings composed of
20 different symbols, mostly the usual opera-
tor symbols (see p. 20 of EMLP for complete
list).

O Thus, ordinary operator names like * or
<= are symbolic identifiers. So would *~,
which explains why 3#%~4 is not inter-
preted “correctly.”

Tuples

A tuple is a parenthesized list of values of any type.

Tuples are like structs in C, but without com-
ponent names (but ML also has the ability to
name components as we shall see much later).

(4, 4.0, "four");
val it = (4,4.0,four”) : int * real * string

Note that the type of a tuple is the list of the
types of its components separated by *’s.

We extract a component of a tuple with the #i
operator; ¢ is any integer for which there is a com-

ponent.

#2(4, 4.0, "four");
val it = 4.0 : real

Lists

A list is a sequence of values surrounded by square
brackets and separated by commas.

Unlike tuples, which use round rather than
square brackets, the elements of a list must
have the same type.

I:nan, "b", "C"];
val it = ["a”,"b”,7c”] : string list
[(1,2), (3,4)];
val it = [(1,2),(3,4)] : (int * int) list
o The type of the first list is string list, i.e.,

a list of strings. The second list is a list of
pairs of integers.

e Note: The empty list is denoted by [] or nil.

Operators on Lists

hd and t1 extract the head (first element) and tail
(list of the remaining elements).

hd([1,2]1);
val it = 1 : int

t1([1,21);
val it = [2] : int list

t1 [1];
val it = [] - int list

e Note the type of the head is the type of an
element, while the type of the tail is a list of
elements.

e Notice in the last example that parentheses
are not needed for arguments of one-argument
functions in ML.

:: 1s the cons operator; it connects a head and a
tail to form a new list.

1::[2,3];

val it = [1,2,3] : int list
@ is the concatenation operator for lists (not for
strings, where ~ is used).

[1]e[2,3];
val it = [1,2,3] : int list

