
CS109B ML Notes for the Week of 5/8/95StructuresML's way of encapsulating concepts such as a datastructure and functions that operate on it.� Keyword structure, the structure name, andan = sign begin a structure de�nition.� The structure itself is de�ned betweenstruct...end and consists of de�nitions suchas val, fun, or exception.Example: Stacks with operations push, pop, top,and create; the last takes an element and returnsa stack of that element alone.� In our selected implementation, a stack is areference to a list.Here is a structure for stacks:structure Stack = structexception EmptyStack;val create(x) = ref [x];fun push(x,s) = s := x::(!s);fun top(ref nil) = raise EmptyStack| top(ref(x::xs)) = x;fun pop(ref nil) = raise EmptyStack| pop(s) = s := tl(!s);end;Using a StructureLike Array, we need to open the structure, withopen Stack;Then, we can use its operations to create and ma-nipulate stacks, as:val myStack = create(0);push(1,myStack);push(2,myStack);top(myStack);pop(myStack);top(myStack); 1

SignaturesML's description of a structure.� The signature includes names and types ofthings, but not their values, much like the de-scription of a function talks about what itsinput and output types are without address-ing what the function does.Example: Here is ML's response to that stackstructure:structure Stack :sig exception EmptyStackval create : '1a ! '1a list refval pop : 'a list ref ! unitval push : 'a * 'a list ref ! unitval top : 'a list ref ! 'aendCreating Your Own Signatures� Use keyword signature, the name and an =sign.� The signature itself comes between sig...end.Example: Suppose we wanted a signature likethat for structure Stack, but without1. Without the function top.2. With stacks restricted to integers.We could use signaturesignature NOTOP = sigexception EmptyStack;val create: int -> int list ref;val pop: int list ref -> unit;val push: int * int list ref -> unit;end;Information Hiding With SignaturesWe can de�ne a new structure that is like an oldone, but with a di�erent, more restrictive signa-ture. 2

� You can't make functions appear by magic,but you can make them go away (i.e., be-come invisible to the user) and you can re-strict types.Example: We could de�ne a structure IntStackwhich is a stack of integers only, and without thetop function.structure IntStack: NOTOP = Stack;Why Information Hiding?Modern software design emphasizes the use of\modules" or \classes" that give the user a well-de�ned, limited interface, usually functions to ap-ply to some hidden data structure.� The theory is that these modules are lesslikely to cause bugs if their data structurecannot be manipulated in a way that is a sur-prise to the designer.� Information hiding lets the module imple-menter use his/her own functions that theuser cannot access.� Writing a structure with all needed functionsand then giving the user only a subset is oneway to achieve this goal.Information Hiding by Local ElementsInstead of hiding elements by a special signature,we can de�ne local elements of a structure by lo-cal...in...end.� De�nitions between local and in are onlyaccessible to the de�nitions after in.� De�nitions after in are accessible to anyonewho opens the structure.Compare local with let: the di�erenceis that let requires in to be followedby an evaluatable expression, not de�ni-tions. 3

open Array;structure Random = structlocalval register = array(10,0);fun feedback1(nil) = ()| feedback1(x::xs) = (update(register,x,1-sub(register,x));feedback1(xs));fun feedback() = feedback1([0,2,4,7]);fun shift1(0) = update(register,0,0)| shift1(i) = (update(register,i,sub(register,i-1));shift1(i-1));fun shift() = shift1(9);fun init1(0) = (update(register,9,1);update(register,0,0))| init1(i) = (update(register,i,0);init1(i-1))in fun init() = init1(9);fun getBit() =let val bit = sub(register,9);in (shift();if bit=1 then feedback() else ();bit)end;endend; Fig. 1. Structure Random.Example: Here is an example of some interest inits own right. A structure called Random in Fig. 1o�ers the user two functions; init to initialize arandom bit generator, and getBit to return thenext random bit. 4

� The method is a feedback shift register, an ar-ray of bits (10 in this case).To get the next bit, read the last (9th)and shift all bits up one.Bring a 0 into the �rst (0th) position.If the bit just generated is 1, comple-ment certain �xed positions of the array.Which positions are complemented de-termines how good the random-numbergenerator is.Here is an example of how Random might beused to print 1000 random bits.open Random;fun random1(0) = print("\n")| random1(i) = (if i mod 72 = 0 then print("\n") else ();print(getBit());random1(i-1));fun random(i) = (init();random1(i));random(1000);� Function random1 counts down, calling get-Bit the appropriate number of times andprinting a newline every 72 bits.� Function random initializes the register to0000000001 and then calls for 1000 bits.
5

