CS109A Notes for Lecture 1/22/96

Functions

1. Keyword fun.

2. Function name and formal parameters.
3. =
4. FExpression giving the value returned by the
function.
Example:
fun cube(x:int) = x*x*x;

val cube = fn : int — int
e Note description of the value of cube.
O It is described as a “fn” (function).

O Its type is given as int -> int. The ->
means “function from...to.” l.e., “cube
is a function from integers to integers.”

O Note inconsistency: for a nonfunction,
ML responds with its value; for a func-
tion, the type is given (but how could ML
describe the “value” of a function save by
repeating the code?).

o To avoid “overloading” the * operator, we
have to tell ML that x is an integer.

O The colon operator attaches the type int
to x.

O Beware: the colon has very low prece-
dence, so parentheses surrounding the
variable and the type are needed.

O Otherwise, the parentheses around the
parameter of cube are optional; the fol-
lowing is legal:

fun cube x = (x:int)*x*x;

Invoking Functions

After defining a function, it can be used as an
operand of an expression.

cube(9);
val it = 729 : int

Patterns

Much of ML’s power comes from its ability to de-
scribe functions as a series of patterns that its in-
put arguments might meet, with an expression de-
scribing the result in each case.

e The first pattern that matches the input
“wins” and determines the result.

Example:

fun member(x, nil) = false
| member(x, y::ys) =
if x=y then true
else member(x, ys);

2 * »

val member = fn : "a a list — bool

e Note type: input (domain) is a pair consisting
of an element of some type ’’a and a list of
elements of that type. Output (range) is a
boolean.

O The double apostrophes in the type name
indicates it is an equality type, one for
which “=" must make sense.

e Warning: it is tempting to write the pattern
member (x,x: :xs) to catch the case where the
element z is found at the head.

O But we may not use a variable twice in a

pattern.
Example:
fun fact 0 = 1
| fact n = n*fact(n-1);

val fact = fn : int — int

e Note that a pattern can be an integer con-
stant.

e Because function application has higher
precedence than binary operators like -, we
need parens in fact(n-1) although they are
not needed in fact n.

(Fairly) General Form of Function Declara-
tions

1. Keyword fun.

2. One or more expressions of the form “pattern
= expression,” separated by vertical bars.

a) Pattern = function name + parameters.
Each parameter may be an expression.

b) The expression may use the variables
that appear in the parameters.

Local Environments

the let...in...end construct allows us to make
local, or temporary declarations using val or fun.

o These declarations go away after the end.

Example: The power set of a set S is the set of
all subsets of §. If sets are represented by lists,
then the power set of a set of integers is of type
int list 1list.

The following is a useful function that prepends =
to each list on a list of lists L.
fun pre(x,nil) = nil
| pre(x,L::Ls) = (x::L)::pre(x,Ls)

val pre = fn : ’'a *

a list list — ’a list list
pre(1, [[2,3], [4,5]1, [11);
val it = [[1,2,3], [1,4,5], [1]] : int list list

The following power-set function uses pre and
computes the power set of the tail (a set with one
fewer element) recursively. It uses that power set
twice, once as-is and once with the head element
prepended.

fun pow([]) = [[I]
| pow(x::xs) =
let
val ps = pow(xs);
in
ps @ pre(x,ps)
end;
val pow = fn : ’a list — ’a list list

.o

POW(["fOO", "bar"]);
val it = [[], ["bar”], ["foo”], ["foo”,”bar”]] : string list list

e In general, a list of declarations, optionally
ended by semicolons, may appear between
let and in.

¢ Common errors: omitting val or end.

Variables may also be defined by a pattern — see
split on p. 66, EMLP.

Example: Given a list, produce the minimum
and maximum of the list of integers.

e Note the result is a pair; most languages only
let you produce pointers to structures such as

pairs.
fun minmax([x:int]) = (x,x)
| minmax(x::xs) =
let
val (low, high) = minmax(xs);
in

if x<low then (x,high)
else if x>high then (low,x)
else (low,high)
end;

std_in:2.1-7.3 Warning: match nonezhaustive
(z :int) :: nil = ...
T s = ...

val minmaz = fn : int list — int * int

minmax([3,4,5,1,6,2,7,5]);
val it = (1,7) : int * int

e Notice that the pattern [x:int] (or just [x])
matches only a list of length 1 and binds z to
the one element of that list.

e ML correctly discovers that minmax has no
pattern that covers the empty list.

0 Since minmax makes no sense on [], we
should handle this problem with an “ex-
ception” as in Ch. 8.

