
CS109A Notes for Lecture 1/22/96Functions1. Keyword fun.2. Function name and formal parameters.3. =4. Expression giving the value returned by thefunction.Example:fun cube(x:int) = x*x*x;val cube = fn : int ! int� Note description of the value of cube.It is described as a \fn" (function).Its type is given as int -> int. The ->means \function from...to." I.e., \cubeis a function from integers to integers."Note inconsistency: for a nonfunction,ML responds with its value; for a func-tion, the type is given (but how could MLdescribe the \value" of a function save byrepeating the code?).� To avoid \overloading" the * operator, wehave to tell ML that x is an integer.The colon operator attaches the type intto x.Beware: the colon has very low prece-dence, so parentheses surrounding thevariable and the type are needed.Otherwise, the parentheses around theparameter of cube are optional; the fol-lowing is legal:fun cube x = (x:int)*x*x;Invoking FunctionsAfter de�ning a function, it can be used as anoperand of an expression.1

cube(9);val it = 729 : intPatternsMuch of ML's power comes from its ability to de-scribe functions as a series of patterns that its in-put argumentsmight meet, with an expression de-scribing the result in each case.� The �rst pattern that matches the input\wins" and determines the result.Example:fun member(x, nil) = false| member(x, y::ys) =if x=y then trueelse member(x, ys);val member = fn : "a * "a list ! bool� Note type: input (domain) is a pair consistingof an element of some type ''a and a list ofelements of that type. Output (range) is aboolean.The double apostrophes in the type nameindicates it is an equality type, one forwhich \=" must make sense.� Warning: it is tempting to write the patternmember(x,x::xs) to catch the case where theelement x is found at the head.But we may not use a variable twice in apattern.Example:fun fact 0 = 1| fact n = n*fact(n-1);val fact = fn : int ! int� Note that a pattern can be an integer con-stant.� Because function application has higherprecedence than binary operators like -, weneed parens in fact(n-1) although they arenot needed in fact n.2

(Fairly) General Form of Function Declara-tions1. Keyword fun.2. One or more expressions of the form \pattern= expression," separated by vertical bars.a) Pattern = function name + parameters.Each parameter may be an expression.b) The expression may use the variablesthat appear in the parameters.Local Environmentsthe let...in...end construct allows us to makelocal, or temporary declarations using val or fun.� These declarations go away after the end.Example: The power set of a set S is the set ofall subsets of S. If sets are represented by lists,then the power set of a set of integers is of typeint list list.The following is a useful function that prepends xto each list on a list of lists L.fun pre(x,nil) = nil| pre(x,L::Ls) = (x::L)::pre(x,Ls);val pre = fn : 'a * 'a list list ! 'a list listpre(1, [[2,3], [4,5], []]);val it = [[1,2,3], [1,4,5], [1]] : int list listThe following power-set function uses pre andcomputes the power set of the tail (a set with onefewer element) recursively. It uses that power settwice, once as-is and once with the head elementprepended.fun pow([]) = [[]]| pow(x::xs) =let val ps = pow(xs);in ps @ pre(x,ps)end;val pow = fn : 'a list ! 'a list list3

pow(["foo", "bar"]);val it = [[], ["bar"], ["foo"], ["foo","bar"]] : string list list� In general, a list of declarations, optionallyended by semicolons, may appear betweenlet and in.� Common errors: omitting val or end.Variables may also be de�ned by a pattern | seesplit on p. 66, EMLP.Example: Given a list, produce the minimumand maximum of the list of integers.� Note the result is a pair; most languages onlylet you produce pointers to structures such aspairs.fun minmax([x:int]) = (x,x)| minmax(x::xs) =let val (low, high) = minmax(xs);in if x<low then (x,high)else if x>high then (low,x)else (low,high)end;std in:2.1-7.3 Warning: match nonexhaustive(x : int) :: nil) ...x :: xs) ...val minmax = fn : int list ! int * intminmax([3,4,5,1,6,2,7,5]);val it = (1,7) : int * int� Notice that the pattern [x:int] (or just [x])matches only a list of length 1 and binds x tothe one element of that list.� ML correctly discovers that minmax has nopattern that covers the empty list.Since minmax makes no sense on [], weshould handle this problem with an \ex-ception" as in Ch. 8.4

