
CS109A Notes for Lecture 1/29/96ExceptionsAn exception is the only thing that a function canreturn other than a value of its return-type (range-type).� Generally indicates an unexpected argumentfor the function.� Declare asexception EmptyList;exception EmptyListA function can raise an exception in lieu ofreturning a value.Example:fun minmax([x:int]) = (x,x)| minmax(nil) = raise EmptyList| minmax(x::xs) =let val (low,high) = minmax(xs);in if x<low then (x,high)else if x>high then (low,x)else (low,high)end;val minmax = fn : int list ! int * intGetting Caught in an ExceptionIf you cause an exception to be raised, and thereis nothing to \handle" it, your program stops withan \uncaught exception."minmax(nil);uncaught exception EmptyList� Many built-in functions have a correspondingexception of the same name but with capital-ized �rst letter.1 div 0;uncaught exception Div� See p. 211{212 EMLP for built-in exceptions.1

Handling ExceptionsCatch exceptions with an expression of the form<expression> handle <match>� A match is one or more clauses of the form<pattern> => <expression> separated byvertical bars, as in anonymous functions.In the context of a \handle" match, thepatterns must be exceptions.� If the expression before handle returns:a) A non-exception: return this value.b) An exception: see if it matches one ofthe patterns and return the correspond-ing expression.Example: Function safeMinmax calls minmax.� If minmax does not raise an exception, safe-Minmax produces a pair with �rst component"OK" and second component the pair pro-duced by minmax.� If minmax raises EmptyList, safeMinmax pro-duces a tuple with "Empty List" as the �rstcomponent and 2nd component (0,0).� Note that an exception is of type exn, while"Empty List" is of type string.fun safeMinmax(L) = ("OK", minmax(L))handle EmptyList => ("Empty List", (0,0));val safeMinmax = fn : int list ! string * (int * int)safeMinmax([0,0,0]);val it = ("OK", (0, 0)) : string * (int * int)safeMinmax([]);val it = ("Empty List", (0, 0)) : string * (int * int)Simple Printingprint(x) works for elementary types: int, string,boolean, real.� Must be disambiguated so ML can �gure outthe type of x. 2

Example:fun hw() = print("hello world\n");val hw = fn : unit ! unit� Note that the parameter of hw is the unit, notan empty tuple.� The range type of hw is also \unit," character-istic of functions like print that don't reallyproduce a return value.hw();hello worldval it = () : unitStatement Lists� General tool, important to print a sequenceof items.� An expression can be a list of expressions,surrounded by parentheses and separated bysemicolons.The value of this expression is the valueof the last.Example:fun foo(i) = (print("The value ");print(i:int);print(" was given\n"))val foo = fn : int ! unitfoo(123);The value 123 was givenval it = () : unit� Again, distinguish between the thing printedand the value of the function call; the latteris the unit.Input� First, you need to open a �le and get a\token" of type instream by using functionopen in. 3

val file = open in("foo");val �le = { : instream� Next, you may read n characters from the �lefoo by calling the function input.val s = input(file, 3);val s = "abc" : stringassuming that the �rst three characters in �le fooare "abc".� Note you refer to the �le by its instream to-ken, not the �le name.Example: Here is a function to read a sequence ofdigits ended by the newline character and returnthe integer value.fun ri(f, i) =let val c = input(f, 1);in if c = "\n" then ielse ri(f, 10*i+ord(c)-ord("0"))end;val ri = fn : instream * int ! int� Key tricks:Second argument is the value of the inte-ger read so far.To incorporate another digit, multiplythe value of what was read by 10 and addthe di�erence between the ASCII codesfor the digit read and "0".fun readInt(f) = ri(f,0);val readInt = fn : instream ! int� readInt starts ri o� properly, with 0 read sofar.readInt(open in("test"));val it = 1234 : int� Note that the instream token is hidden; it isreturned by open in and passed immediatelyto readInt. 4

