
CS109A Notes for Lecture 2/9/96Curried FunctionsIn principle, all functions take one argument, butthe argument may be a tuple.However, it is also possible to de�ne a functionwith more than one parameter and no parenthesescalled Curried form. It makes a subtle di�erencein the type of the function.Example:fun add(x,y) = x+y:int;val add = fn : int * int ! intfun addc x y = x+y:int;val addc = fn : int ! int ! int� add takes a pair of integers (an int * int)and returns their integer sum.� addc takes one integer x as argument and re-turns a function that takes an integer y andadds x to it.Note -> associates from the right, so thetype is int->(int->int).Partial InstantiationWe can name and assign this \intermediate" func-tion. val add3 = addc 3;val add3 = fn : int ! intadd3(10);val it = 13 : intPolymorphismML restricts types of variables only because it hasto.� A function takes a parameter of a given type.e.g., ord(s) forces s to be a string.1

� An overloaded function (e.g., +, <) applies toa variable, which must then be declared.� A equality operator, = or <>, applies to a vari-able, forcing it to be an equality type.Equality types are de�ned recursively:Basis: Elementary types (int, etc.) are equalitytypes.Induction: Tuples or lists of equality types areequality types.fun ins gt (x,nil) = [x]| ins gt (x, y::ys) =if gt(x,y) theny::ins gt (x,ys)else x::y::ys;val ins = fn : ('a * 'a ! bool) ! 'a * 'a list ! 'a listfun isort gt nil = nil| isort gt (x::xs) =ins gt (x, (isort gt xs));val isort = fn : ('a * 'a ! bool) ! 'a list ! 'a listisort (op >) [3,1,4,1,5,9,2,6];val it = [1,1,2,3,4,5,6,9] : int list� op converts an in�x operator like > into an\ordinary" function that takes a pair of argu-ments.Conversion is necessary because gt is ofthat form.fun igt(x:int,y) = x > y;val igt = fn : int * int ! boolval iisort = isort igt;val iisort = fn : int list ! int listiisort([5,3,7]);val it = [3,5,7] : int listHigher-Order FunctionsML makes no restrictions on function types.� If T1 and T2 are any types, then T1 ! T2 isalso a legal type, representing functions withdomain type T1 and range type T2.2

� Any function whose arguments include one ormore function types is a higher-order func-tion.MapAmong the interesting higher-order functions is:fun map F nil = nil| map F (x::xs) = F(x)::map F xs;val map = fn : ('a ! 'b) ! 'a list ! 'b list� Applies function F to each element of a listand returns the resulting list.� A Curried version of map on p. 102, EMLP.fun ++ x = x+1;val ++ = fn : int ! intmap ++ [1,2,3];val it = [2,3,4] : int list� Remember that names composed of the usualsymbols are legal identi�ers in ML.� We can also use an anonynous function as the�rst argument of map.map (fn x => x+1) [1,2,3]val it = [2,3,4] : int list� Finally, we can bind the �rst argument to cre-ate a function that applies to lists.val listSq = map(fn x => x*x:int);val listSq = fn : int list ! int listlistSq([1,2,3,4,5]);val it = [1,4,9,16,25] ; int listReduce� Put a (typically associative) operator betweenall the elements of a list and evaluate the re-sulting expression.e.g.: [1,2,3,4] with * as the operatorbecomes 1 � 2 � 3 � 4 = 24.� We'll modify from p. 104, EMLP by also al-lowing an initial value associated with theempty list, and by Currying partially.3

fun reduce (F,g) nil = g| reduce (F,g) (x::xs) =F(x,(reduce (F,g) xs));val reduce = fn : ('a * 'b ! 'b) * 'b ! 'a list ! 'breduce (op *, 1) [2,3,4,5];val it = 120 :int� The value of this expression is2 � (3 � (4 � (5 � 1)))val length =reduce (fn(x,y) => y+1, 0);val length = fn : 'a list ! intlength(["a","b","c"]);val it = 3 : int

4

