CS109A Notes for Lecture 3/8/96

Data Structures

1. Linked list = records with data field(s) and

nezt field pointing to next element.

2. Array = array of limited size with cursor or
pointer to last element.

Operations

Lookup, insert, delete (like the Dictionary ADT)
are most common.

e Take O(n) time on an n-element list.
Example: Here is insertion in an ML list.

e Does not create duplicate elements, so must
check z is not already on list.

(1) fun insert(x,nil) = [x]

(2) | insert(x, y::ys) =

(3) if x<>y then y::insert(x,ys)
(4) else y::ys;

Correctness proof:

e S(n): If Lis of length n, then insert(z, L)
returns a list with z and the elements of L,
and nothing else.

Basis: n = 0. Then L has no elements, line (1)’s
pattern matches, and a list with only is returned.

Induction: Assume S(n),n > 0. If L is of length
n + 1, line (1) doesn’t match. Line (2) matches.

e If z # y, then by the inductive hypothesis,
insert(z,ys) returns a list with the elements
of L except for y but with z included. Then
line (3) returns a list with y, z, and the other
elements of L, i.e., what S(n + 1) says should
be returned.

e Ifz =y, then line (4) returns L. Since is on
L, again we return what S(n + 1) says should
be returned.

O Note that we used the inductive hypoth-
esis to talk about what happens on re-
cursive calls, without having to imagine
an arbitrarily large sequence of calls.

Implementation Variants

1.

Sorting the list.

0 We can search only as far as z to test
whether z is on the list (saves average
factor of 2).

Allow duplicates.
O Insert in O(1).

O Penalty is that lookup, delete may take
longer because lists with duplicates get
longer than number of elements.

Sentinels: Add z onto end of list before
searching for .

O Suitable only for array representation.

O Saves time testing for end of list at each
step.

Stacks and Queues

Stack = ADT with principal operations push
and pop.

exception EmptyStack;

fun push(x,S) = x::S;

fun pop(nil

= raise EmptyStack
| pop(x::xs) = xs;

Queue = ADT with principal operations
enqueue and dequeue (= pop).

exception EmptyQueue;
fun enqueune(x,Q) = Q@[x];

fun deqeue(nil) = raise EmptyQueue
| dequeue(x::xs) = xs;

Use of Stack to Support Recursive Calls

Here is the preorder function from Fig. 5.32, FCS.
void preorder(TREE t)

(1) if (¢ '= NULL) {

(2) printf("%c\n", t->nodeLabel);
(3) preorder(t->leftChild) ;

(4) preorder(t->rightChild) ;

The run-time tmplementation of such a func-
tion is essentially as follows.

o Keep a stack whose entries are pairs that tell
us what we need to know about the state of
a call to preorder:

1. The value of ¢, a pointer to the root of
the tree about which the call to preorder
was made.

2. The place in the execution of the func-
tion, essentially the line number being
executed. Most important, when we
make a recursive call, is it from line (3)
or line (4)?

e When a new call is made at line (3) or (4),
push the new value of ¢t onto the stack with
line number = 1.

O When a call to preorder returns, pop the
stack, exposing the value of £ and the cur-
rent line number from the previous call.

Example: Consider the tree:

7\
b c
VRN
d e

Here is the sequence of stacks (top at the right) in
which the pair (z,7) represents a stack entry for
the call in which ¢ is a pointer to node z and 7 is

3

the line number being executed.

e Ignores calls on empty trees that immediately
return.

8 8 8 8

8 8 82

S e N N e N N e N

8

mAAAAE\/—\/—\/—\/—\
ok WoWw W www

