
CS109A Notes for Lecture 3/8/96Data Structures1. Linked list = records with data �eld(s) andnext �eld pointing to next element.2. Array = array of limited size with cursor orpointer to last element.OperationsLookup, insert, delete (like the Dictionary ADT)are most common.� Take O(n) time on an n-element list.Example: Here is insertion in an ML list.� Does not create duplicate elements, so mustcheck x is not already on list.(1) fun insert(x,nil) = [x](2) | insert(x, y::ys) =(3) if x<>y then y::insert(x,ys)(4) else y::ys;Correctness proof:� S(n): If L is of length n, then insert(x;L)returns a list with x and the elements of L,and nothing else.Basis: n = 0. Then L has no elements, line (1)'spattern matches, and a list with only x is returned.Induction: Assume S(n), n � 0. If L is of lengthn+ 1, line (1) doesn't match. Line (2) matches.� If x 6= y, then by the inductive hypothesis,insert(x; ys) returns a list with the elementsof L except for y but with x included. Thenline (3) returns a list with y, x, and the otherelements of L, i.e., what S(n+1) says shouldbe returned.� If x = y, then line (4) returns L. Since x is onL, again we return what S(n+1) says shouldbe returned. 1

Note that we used the inductive hypoth-esis to talk about what happens on re-cursive calls, without having to imaginean arbitrarily large sequence of calls.Implementation Variants1. Sorting the list.We can search only as far as x to testwhether x is on the list (saves averagefactor of 2).2. Allow duplicates.Insert in O(1).Penalty is that lookup, delete may takelonger because lists with duplicates getlonger than number of elements.3. Sentinels: Add x onto end of list beforesearching for x.Suitable only for array representation.Saves time testing for end of list at eachstep.Stacks and Queues� Stack = ADT with principal operations pushand pop.exception EmptyStack;fun push(x,S) = x::S;fun pop(nil) = raise EmptyStack| pop(x::xs) = xs;� Queue = ADT with principal operationsenqueue and dequeue (= pop).exception EmptyQueue;fun enqueue(x,Q) = Q@[x];fun deqeue(nil) = raise EmptyQueue| dequeue(x::xs) = xs;2

Use of Stack to Support Recursive CallsHere is the preorder function from Fig. 5.32, FCS.void preorder(TREE t){(1) if (t != NULL) {(2) printf("%c\n", t->nodeLabel);(3) preorder(t->leftChild);(4) preorder(t->rightChild);}} The run-time implementation of such a func-tion is essentially as follows.� Keep a stack whose entries are pairs that tellus what we need to know about the state ofa call to preorder:1. The value of t, a pointer to the root ofthe tree about which the call to preorderwas made.2. The place in the execution of the func-tion, essentially the line number beingexecuted. Most important, when wemake a recursive call, is it from line (3)or line (4)?� When a new call is made at line (3) or (4),push the new value of t onto the stack withline number = 1.When a call to preorder returns, pop thestack, exposing the value of t and the cur-rent line number from the previous call.Example: Consider the tree:ab cd eHere is the sequence of stacks (top at the right) inwhich the pair (x; i) represents a stack entry forthe call in which t is a pointer to node x and i is3

the line number being executed.� Ignores calls on empty trees that immediatelyreturn. (a; 1)(a; 3)(b; 1)(a; 3)(b; 3)(d; 1)(a; 3)(b; 3)(a; 3)(b; 4)(e; 1)(a; 3)(b; 4)(a; 3)(a; 4)(c; 1)(a; 4)�

4

