CS109A Notes for Lecture 2/27/95

\mathbf{Sets}

- Defined by *membership* relation \in .
- Atoms may not have members, but may be members of a set.
 - \Box Sets may also be members of sets.
- Membership is "once only." An element cannot be a member of a set more than once.
 - □ Unlike lists, where (a) elements are ordered, and (b) elements may repeat.
 - □ Distinguished from *multisets* or *bags*, where elements are unordered but may appear more than once.

Why Sets?

- Model underlying most representation of information.
 - □ Structured sets represent record structures, tables.
 - Relational model used in database systems derives both its properties and its operations (querying, updating) from operations on sets.
- Probability space is a simple kind of set.
- Set theory underlies much (all?) of mathematics, explicating concepts such as real numbers, infinities.

Representing Sets

1. By *extension*: list the elements, surrounded by curly brackets.

Example: $\{1,2,\{3,4\}\}$ = set with three elements: the atoms 1 and 2 and the set $\{3,4\}$.

2. By *abstraction*: describe the elements belonging to the set. **Example:** $\{x \mid 3 \le x \le 10 \text{ and } x \text{ is an integer}\} = \{3, 4, \dots, 10\}.$

• Read: "the set of x such that $3 \le x \le 10 \cdots$."

Algebra of Sets

Principal operators on a pair of sets S and T:

- 1. Union: set of elements in S or T or both.
- 2. Intersection: set of elements in both.
- 3. Difference: S T = elements in S, not T.
- To an extent, these share algebraic laws with $+, \times,$ and -, respectively.

Equality of Sets

- Two sets are equal if they have exactly the same members.
- Two expressions involving sets are equivalent
 (≡) if they produce the same value regardless
 of what values we assign to the set-variables
 in the expressions.

Algebraic Laws

These are observations about pairs of expressions that are equivalent.

- Commutative laws of union, intersection. The order of operands may be reversed.
- Associative laws of union, intersection. Operations may be grouped in any order.
 - \square Similar law for union and difference: $S - (T \cup R) \equiv (S - T) - R$
- Distributive laws: like x(y+z) = xy + xz for arithmetic. But there are 3 different laws for sets:
 - \square $S \cap (T \cup R) \equiv (S \cap T) \cup (S \cap R)$
 - $\square \quad S \cup (T \cap R) \equiv (S \cup T) \cap (S \cup R)$
 - $\square \quad (S \cup T) R \equiv (S R) \cup (T R)$

- The empty set \emptyset has important properties:
 - \square \emptyset is the identity for union: $S \cup \emptyset = S$.
 - $\square \quad \text{It is also the annihilator for intersection} \\ S \cap \emptyset = \emptyset.$
 - □ There is no identity for intersection or annihilator for union, because "set containing everything" does not exist.

$$\Box \quad S-S=\emptyset.$$

 $\square \quad \emptyset - S = \emptyset.$

• Idempotence laws: Union and intersection are idempotent, e.g., $S \cup S = S$.

Proving Equivalences

Three approaches:

- 1. Manipulating known equivalences.
- 2. Classifying elements by sets of which they are members.
 - Venn diagrams and truth-tables (in logic, Ch. 12, FCS) are instances of this approach.
- 3. Proving containments in both directions, using definitions of operators.

Manipulating Equivalences

Equivalence is preserved by:

- Substituting an expression for *all* occurrences of some variable in an equivalence.
- Replacing a subexpression in an equivalence by a known equivalent expression.
- Use of transitivity of equivalence: If $E \equiv F$ and $F \equiv G$ then $E \equiv G$.
- Use of commutativity of equivalence: If $E \equiv F$ then $F \equiv E$.

Example: Let's show $(S \cup T) \cap S \equiv S$.

$S \cup (T \cap R) \equiv (S \cup T) \cap (S \cup R)$	Dist. law
$S \cup (T \cap \emptyset) \equiv (S \cup T) \cap (S \cup \emptyset)$	$R \Rightarrow \emptyset$
$S \cup \emptyset \equiv (S \cup T) \cap S$	Ident., Annih.
$S\equiv (S\cup T)\cap S$	Ident.
$(S \cup T) \cap S \equiv S$	$\text{Comm of}\equiv$

Enumerating Cases

If there are n sets in an expression, we can divide elements into 2^n classes, depending on whether they are in/out of each set ("painting houses").

• A table decides whether an equivalence holds.

Example: $S \equiv (S \cup T) \cap S$.

	S	T	$S \cup T$	RHS
()	0	0	0
()	1	1	0
	1	0	1	1
-	1	1	1	1

Equivalence Through Containment

- $S \subseteq T$ (S is contained in T) means every element of S is an element of T.
- S = T if and only if $S \subseteq T$ and $T \subseteq S$.
- We can prove the equivalence of two expressions by showing the result of each is contained in the other.

Example: $S \equiv (S \cup T) \cap S$.

 $\Rightarrow \text{ If } x \in S \text{ then } x \in (S \cup T) \text{ (def. of "union").}$ Thus, $x \in ((S \cup T) \cap S)$ (def. of "intersection").

 $\Leftarrow \text{ If } x \in \big((S \cup T) \cap S\big), \text{ then } x \in S \text{ (def. of ``intersection'').}$