CS109A Notes for Lecture 2/27/95

Sets
e Defined by membership relation €.

e Atoms may not have members, but may be
members of a set.

0 Sets may also be members of sets.

e Membership is “once only.” An element can-
not be a member of a set more than once.

O  Unlike lists, where (a) elements are or-
dered, and (b) elements may repeat.

O Distinguished from multisets or bags,
where elements are unordered but may
appear more than once.

Why Sets?

e Model underlying most representation of in-
formation.

O Structured sets represent record struc-
tures, tables.

O Relational model used in database sys-
tems derives both its properties and its
operations (querying, updating) from op-
erations on sets.

e Probability space is a simple kind of set.

e Set theory underlies much (all?) of mathe-
matics, explicating concepts such as real num-
bers, infinities.

Representing Sets

1. By eztension: list the elements, surrounded
by curly brackets.

Example: {1,2,{3,4}} = set with three ele-
ments: the atoms 1 and 2 and the set {3,4}.

2. By abstraction: describe the elements belong-
ing to the set.



Example: {z |3 < # < 10 and z is an integer}
— {3,4,...,10}.

Read: “the set of £ suchthat3 <z <10....”

Algebra of Sets

Principal operators on a pair of sets § and T

1.
2.
3.

Union: set of elements in S or T or both.
Intersection: set of elements in both.
Difference: S — T = elements in S, not T.

To an extent, these share algebraic laws with
+, X, and —, respectively.

Equality of Sets

Two sets are equal if they have exactly the
same members.

Two expressions involving sets are equivalent
(=) if they produce the same value regardless
of what values we assign to the set-variables
in the expressions.

Algebraic Laws

These are observations about pairs of expressions
that are equivalent.

Commutative laws of union, intersection. The
order of operands may be reversed.

Associative laws of union, intersection. Oper-
ations may be grouped in any order.

O Similar law for union and difference:

S—(TUR)=(S-T)-R

Distributive laws: like z(y + 2) = zy + @z for
arithmetic. But there are 3 different laws for
sets:

O SN(TUR)=(
O SU(TnR)=(
O (SUT)-R=(S—R)U(T-R)

SNT
SuT



e The empty set ) has important properties:

O

O

O

O

() is the identity for union: S U0 = §.

It is also the annihilator for intersection

SNo=0.

There is no identity for intersection or
annihilator for union, because “set con-
taining everything” does not exist.

S—-85=0.
0—S=0.

o Idempotence laws: Union and intersection are
idempotent, e.g., SU S = S.

Proving Equivalences

Three approaches:

1. Manipulating known equivalences.

2. Classifying elements by sets of which they are

members.

O

Venn diagrams and truth-tables (in logic,
Ch. 12, FCS) are instances of this ap-
proach.

3. Proving containments in both directions, us-
ing definitions of operators.

Manipulating Equivalences

Equivalence is preserved by:

e  Substituting an expression for all occurrences

of some variable in an equivalence.

e Replacing a subexpression in an equivalence

by a known equivalent expression.

o Use of transitivity of equivalence: If E = F

and F' = G then F =(.

o Use of commutativity of equivalence: If £ =

F then F' = F.

Example: Let’s show (SUT)N S =S.



(SUT)N (S U R) Dist. law
(SUT)N(SUDd) R=10
=(SuT)nS Ident., Annih.
SuT)ynsS Ident.
(SuT)ynsS=S Comm of =

Enumerating Cases

If there are n sets in an expression, we can divide
elements into 2™ classes, depending on whether
they are in/out of each set (“painting houses”).

e A table decides whether an equivalence holds.
Example: S=(SUT)NS.

S T SuT RHS
0

= =0 O
= o = o
= =0 O

1
1
1

Equivalence Through Containment

e S CT(Sis contained in T)) means every ele-
ment of S is an element of T'.

o S=Tifandonlyif SCT andT CS.

e We can prove the equivalence of two expres-
sions by showing the result of each is con-
tained in the other.

Example: S=(SUT)NS.

= Ifz € S then z € (S U T) (def. of “union”).
Thus, z € ((S uT)n S) (def. of “intersection”).

cIfze (SUT)NS), then z € S (def. of

“intersection”).



