CS109A Notes for Lecture 2/27/95

Sets

- Defined by membership relation \in.
- Atoms may not have members, but may be members of a set.
$\square \quad$ Sets may also be members of sets.
- Membership is "once only." An element cannot be a member of a set more than once.
\square Unlike lists, where (a) elements are ordered, and (b) elements may repeat.
\square Distinguished from multisets or bags, where elements are unordered but may appear more than once.

Why Sets?

- Model underlying most representation of information.
\square Structured sets represent record structures, tables.
\square Relational model used in database systems derives both its properties and its operations (querying, updating) from operations on sets.
- Probability space is a simple kind of set.
- Set theory underlies much (all?) of mathematics, explicating concepts such as real numbers, infinities.

Representing Sets

1. By extension: list the elements, surrounded by curly brackets.

Example: $\{1,2,\{3,4\}\}=$ set with three elements: the atoms 1 and 2 and the set $\{3,4\}$.
2. By abstraction: describe the elements belonging to the set.

Example: $\{x \mid 3 \leq x \leq 10$ and x is an integer $\}$
$=\{3,4, \ldots, 10\}$.

- Read: "the set of x such that $3 \leq x \leq 10 \cdots$."

Algebra of Sets

Principal operators on a pair of sets S and T :

1. Union: set of elements in S or T or both.
2. Intersection: set of elements in both.
3. Difference: $S-T=$ elements in S, not T.

- To an extent, these share algebraic laws with ,$+ \times$, and - , respectively.

Equality of Sets

- Two sets are equal if they have exactly the same members.
- Two expressions involving sets are equivalent (\equiv) if they produce the same value regardless of what values we assign to the set-variables in the expressions.

Algebraic Laws

These are observations about pairs of expressions that are equivalent.

- Commutative laws of union, intersection. The order of operands may be reversed.
- Associative laws of union, intersection. Operations may be grouped in any order.
\square Similar law for union and difference:

$$
S-(T \cup R) \equiv(S-T)-R
$$

- Distributive laws: like $x(y+z)=x y+x z$ for arithmetic. But there are 3 different laws for sets:
$\square \quad S \cap(T \cup R) \equiv(S \cap T) \cup(S \cap R)$
$\square \quad S \cup(T \cap R) \equiv(S \cup T) \cap(S \cup R)$
$\square \quad(S \cup T)-R \equiv(S-R) \cup(T-R)$
- The empty set \emptyset has important properties:
$\square \emptyset$ is the identity for union: $S \cup \emptyset=S$.
$\square \quad$ It is also the annihilator for intersection $S \cap \emptyset=\emptyset$.
$\square \quad$ There is no identity for intersection or annihilator for union, because "set containing everything" does not exist.
$\square \quad S-S=\emptyset$.
$\square \quad \emptyset-S=\emptyset$.
- Idempotence laws: Union and intersection are idempotent, e.g., $S \cup S=S$.

Proving Equivalences

Three approaches:

1. Manipulating known equivalences.
2. Classifying elements by sets of which they are members.
$\square \quad$ Venn diagrams and truth-tables (in logic, Ch. 12, FCS) are instances of this approach.
3. Proving containments in both directions, using definitions of operators.

Manipulating Equivalences

Equivalence is preserved by:

- Substituting an expression for alloccurrences of some variable in an equivalence.
- Replacing a subexpression in an equivalence by a known equivalent expression.
- Use of transitivity of equivalence: If $E \equiv F$ and $F \equiv G$ then $E \equiv G$.
- Use of commutativity of equivalence: If $E \equiv$ F then $F \equiv E$.

Example: Let's show $(S \cup T) \cap S \equiv S$.
$S \cup(T \cap R) \equiv(S \cup T) \cap(S \cup R)$ Dist. law
$S \cup(T \cap \emptyset) \equiv(S \cup T) \cap(S \cup \emptyset) \quad R \Rightarrow \emptyset$
$S \cup \emptyset \equiv(S \cup T) \cap S \quad$ Ident., Annih.
$S \equiv(S \cup T) \cap S \quad$ Ident.
$(S \cup T) \cap S \equiv S \quad$ Comm of \equiv

Enumerating Cases

If there are n sets in an expression, we can divide elements into 2^{n} classes, depending on whether they are in/out of each set ("painting houses").

- A table decides whether an equivalence holds.

Example: $S \equiv(S \cup T) \cap S$.

S	T	$S \cup T$	RHS
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Equivalence Through Containment

- $\quad S \subseteq T(S$ is contained in $T)$ means every element of S is an element of T.
- $\quad S=T$ if and only if $S \subseteq T$ and $T \subseteq S$.
- We can prove the equivalence of two expressions by showing the result of each is contained in the other.

Example: $S \equiv(S \cup T) \cap S$.
\Rightarrow If $x \in S$ then $x \in(S \cup T)$ (def. of "union"). Thus, $x \in((S \cup T) \cap S)$ (def. of "intersection").
\Leftarrow If $x \in((S \cup T) \cap S)$, then $x \in S$ (def. of "intersection").

