
CS109A Notes for Lecture 2/27/95Sets� De�ned by membership relation 2.� Atoms may not have members, but may bemembers of a set.Sets may also be members of sets.� Membership is \once only." An element can-not be a member of a set more than once.Unlike lists, where (a) elements are or-dered, and (b) elements may repeat.Distinguished from multisets or bags,where elements are unordered but mayappear more than once.Why Sets?� Model underlying most representation of in-formation.Structured sets represent record struc-tures, tables.Relational model used in database sys-tems derives both its properties and itsoperations (querying, updating) from op-erations on sets.� Probability space is a simple kind of set.� Set theory underlies much (all?) of mathe-matics, explicating concepts such as real num-bers, in�nities.Representing Sets1. By extension: list the elements, surroundedby curly brackets.Example: f1; 2; f3; 4gg = set with three ele-ments: the atoms 1 and 2 and the set f3; 4g.2. By abstraction: describe the elements belong-ing to the set. 1



Example: fx j 3 � x � 10 and x is an integerg= f3; 4; : : : ; 10g.� Read: \the set of x such that 3 � x � 10 � � � ."Algebra of SetsPrincipal operators on a pair of sets S and T :1. Union: set of elements in S or T or both.2. Intersection: set of elements in both.3. Di�erence: S � T = elements in S, not T .� To an extent, these share algebraic laws with+, �, and �, respectively.Equality of Sets� Two sets are equal if they have exactly thesame members.� Two expressions involving sets are equivalent(�) if they produce the same value regardlessof what values we assign to the set-variablesin the expressions.Algebraic LawsThese are observations about pairs of expressionsthat are equivalent.� Commutative laws of union, intersection. Theorder of operands may be reversed.� Associative laws of union, intersection. Oper-ations may be grouped in any order.Similar law for union and di�erence:S � (T [ R) � (S � T )�R� Distributive laws: like x(y + z) = xy + xz forarithmetic. But there are 3 di�erent laws forsets:S \ (T [ R) � (S \ T ) [ (S \ R)S [ (T \ R) � (S [ T ) \ (S [ R)(S [ T )�R � (S �R) [ (T �R)2



� The empty set ; has important properties:; is the identity for union: S [ ; = S.It is also the annihilator for intersectionS \ ; = ;.There is no identity for intersection orannihilator for union, because \set con-taining everything" does not exist.S � S = ;.; � S = ;.� Idempotence laws: Union and intersection areidempotent, e.g., S [ S = S.Proving EquivalencesThree approaches:1. Manipulating known equivalences.2. Classifying elements by sets of which they aremembers.Venn diagrams and truth-tables (in logic,Ch. 12, FCS) are instances of this ap-proach.3. Proving containments in both directions, us-ing de�nitions of operators.Manipulating EquivalencesEquivalence is preserved by:� Substituting an expression for all occurrencesof some variable in an equivalence.� Replacing a subexpression in an equivalenceby a known equivalent expression.� Use of transitivity of equivalence: If E � Fand F � G then E � G.� Use of commutativity of equivalence: If E �F then F � E.Example: Let's show (S [ T ) \ S � S.3



S [ (T \ R) � (S [ T ) \ (S [ R) Dist. lawS [ (T \ ;) � (S [ T ) \ (S [ ;) R) ;S [ ; � (S [ T ) \ S Ident., Annih.S � (S [ T ) \ S Ident.(S [ T ) \ S � S Comm of �Enumerating CasesIf there are n sets in an expression, we can divideelements into 2n classes, depending on whetherthey are in/out of each set (\painting houses").� A table decides whether an equivalence holds.Example: S � (S [ T ) \ S.S T S [ T RHS0 0 0 00 1 1 01 0 1 11 1 1 1Equivalence Through Containment� S � T (S is contained in T ) means every ele-ment of S is an element of T .� S = T if and only if S � T and T � S.� We can prove the equivalence of two expres-sions by showing the result of each is con-tained in the other.Example: S � (S [ T ) \ S.) If x 2 S then x 2 (S [ T ) (def. of \union").Thus, x 2 �(S [ T ) \ S� (def. of \intersection").( If x 2 �(S [ T ) \ S�, then x 2 S (def. of\intersection").
4


