CS109A Notes for Lecture 3/10/95

Why Study Infinite Sets?

- Occasionally useful sometimes in CS you reason about infinite sequences of events or other infinite things.
- Intellectually challenging.
- Fun and interesting.
- Something you're expected to know.

Counting and Cardinality

- The *cardinality* of a set is the number of elements in that set.
- Two sets are *equipotent* if and only if they have the same cardinality.
- The existence of a one-to-one correspondence between two sets proves that they are equipotent.
- Counting is really just creating a one-to-one correspondence between a set and the set of integers from 1 to some number n.

Example

	1
\Diamond	2
\triangle	3
0	4
\Diamond	5

Finite and Infinite Sets

Can you create a one-to-one correspondence between a set and a proper subset of itself?
If so, you have a solution to the equation x = x + y, where x is the cardinality of the set and y ≥ 1 is the cardinality of the stuff you left out.

- No finite x can satisfy that equation, but an "infinite" value can.
- This gives the technical definition of an infinite set: it is a set where there exists a one-to-one correspondence between the set itself and a proper subset.

Example

Let **N** be the set of integers greater than 0. Clearly, $\mathbf{N} - \{1\}$ is a proper subset of **N**. We can create a one-to-one correspondence between these two sets by matching each element $x \in \mathbf{N}$ with element $x + 1 \in \mathbf{N} - \{1\}$. Therefore, **N** is an infinite set.

Countable Infinity

- Once we have an infinite set, we can prove another set infinite by creating a one-to-one correspondence between the known-infinite set and a subset (possibly the whole set) of the other set.
- For example, the set of all integers **Z** contains **N**, which is obviously in one-to-one correspondence with **N** itself, so **Z** is infinite, too.
- Surprisingly, **Z** and **N** are actually equipotent. For example, a one-to-one correspondence between **N** and **Z** matches any $x \in \mathbf{N}$ to $(x \operatorname{div} 2)$ if x is odd and to $-(x \operatorname{div} 2)$ if x is even.
- Similarly, the **Z** is equipotent with the set of even integers.
- Even more surprising, the set **N** is equipotent with the set of pairs of positive integers:

- Therefore, the set of rational numbers **Q** is also equipotent with **Z** and **N**, since every rational number can be represented as a pair of integers.
- Many common infinite sets are equipotent with the set of integers. This cardinality is written \aleph_0 (pronounced "aleph zero"), and a set with this cardinality is said to be *countably infinite* because we can put its elements in one-to-one correspondence with \mathbf{N} .

Uncountable Infinity

- Clearly the set \mathcal{R} of real numbers is infinite, since it contains all the integers. Is it countably infinite?
- \mathcal{R} is equipotent with the set of real numbers between 0 and 1 (or any other interval) by the following construction:

Mathematically, the one-to-one correspondence maps any real number x to $y = (\operatorname{Arctan}(x) + (\pi/2))/\pi$, which is always between 0 and 1, and inversely, maps any real number $y \in (0,1)$ to $x = \tan(\pi y - (\pi/2))$.

• Suppose there exists a one-to-one correspondence between the real numbers from 0 to 1 and **N**:

n	Decimal Representation					
1	1	1	2	3	5	
2	1	4	1	5 6	9	
3	0	1	9	6	7	
4	9	9	9	9	9	
5	1	2	3	4	5	
:			:			

- We can always generate another real number not on the list. Therefore, no one-to-one correspondence exists.
- Therefore, there are more real numbers than there are integers. Sets with cardinality greater than \aleph_0 are said to be uncountably infinite.

Proving and Disproving Equipotency

- Two sets are equipotent if **there exists** a one-to-one correspondence. If you find a one-to-one correspondence between to sets, you have proven them equipotent. If you can't find a one-to-one correspondence, you neither proven nor disproven anything.
- To disprove equipotence, you must prove that no one-to-one correspondence is possible. The diagonalization technique given above is one way to do this.
- Alternatively, if you can prove one set countably infinite and the other set uncountably infinite, you've also proven that the two sets are not equipotent.