CS109A Notes for Lecture 1/17/96

Simple Inductions

Three pieces:

- 1. A statement S(n) to be proved.
 - \Box The statement must be about an integer parameter n.
- 2. A basis for the proof. This is the statement S(b) for some integer b. Often b = 0 or b = 1.
- 3. An *inductive step* for the proof. We prove the statement "S(n) implies S(n+1)" for any n.
- The statement S(n), used in this proof, is called the *inductive hypothesis*.
- We conclude that S(n) is true for all $n \geq b$.
 - \square S(n) might not be true for some n < b.

Example: The limit of the sum

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \cdots$$

is 1. (Each term is 1 divided by the product of two consecutive integers.)

To prove this fact, we can prove the following statement about the finite prefixes of the sum:

$$S(n): \sum_{i=1}^n rac{1}{i(i+1)} = rac{n}{n+1}$$

Basis: The basis is the case n = 1, that is, we must prove S(1), or

$$\sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{1+1}$$

There is one term, for i = 1, so we find that the left and right sides of the = sign evaluate to 1/2.

1

• Thus, the basis is true.

Induction: To prove the induction, we must prove S(n) implies S(n+1). S(n+1) is:

$$\sum_{i=1}^{n+1} \frac{1}{i(i+1)} = \frac{n+1}{(n+1)+1}$$

- Key "trick": Express S(n+1) using S(n) and "something left over."
- In this case, the sum in S(n+1) is the sum in S(n) plus the "extra" term for i = n+1: 1/(n+1)(n+2).

That is, S(n+1) can be written:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{(n+1)+1}$$

Use the inductive hypothesis. The sum is equal to n/(n+1); that's what S(n) says. Thus, we must prove:

$$\frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{(n+1)+1}$$

That's simple algebra!

• Thus, the induction is proved, and we conclude S(n) holds for all $n \geq$ the basis value,

General Pattern for (Simple) Inductive Proofs

- 1. State what S(n) is.
- 2. Explain intuitively what n represents, e.g., "any positive integer" or "the length of a string."
- 3. Tell what value of n is the basis value, say n = b.
- 4. Prove S(b).
- 5. State that you are assuming $n \geq b$ and that S(n) is true.

- 6. Prove S(n+1) using these assumptions. You will surely have to use the "inductive hypothesis" S(n) in the proof.
- 7. State that as a result of your proofs (4) and (6), you conclude S(n) for all $n \geq b$.

More General Inductive Proofs

- There can be more than one basis case.
- We can do a *complete* induction (or "strong" induction), in which or proof that S(n+1) is true uses any of S(b), S(b+1), ..., S(n), where b is the lowest basis value.
- Page 51 of FCS has the general proof outline.

An Example With Multiple Basis Cases, Complete Induction

We claim that every integer ≥ 24 can be written as 5a + 7b for nonnegative integers a and b.

• Note that some integers < 24 cannot be expressed this way, e.g., 16, 23.

Let S(n) be the statement "n = 5a + 7b for some $a \ge 0$ and $b \ge 0$."

Basis: The five basis cases are 24 through 28.

$$24 = 5 \times 2 + 7 \times 2$$

$$25 = 5 \times 5 + 7 \times 0$$

$$26 = 5 \times 1 + 7 \times 3$$

$$27 = 5 \times 4 + 7 \times 1$$

$$28 = 5 \times 0 + 7 \times 4$$

Induction: Let $n+1 \geq 29$. Then $n-4 \geq 24$, the lowest basis case.

- Thus, S(n-4) is true, and we can write n-4=5a+7b for some a and b.
- Thus, n+1 = 5(a+1) + 7b, proving S(n+1).
 - Do not be thrown by the fact that a in the statement S(n+1) is a+1 here. The statement calls for "any a."

 \square Actually, this "complete" induction is not very complete; we only used one previous statement, S(n-4). But S(n) is not enough of an inductive hypothesis.

Class Problem for Next Time

What is the sum of the first n terms of the series $2+5+8+11+\cdots$?

• Figure out the answer, then prove you are right by induction on n.