CS109B Notes for Lecture 4/17/95

NP-Complete Problems

We have met some problems that have “easy” so-
lutions; they have algorithms that run in time that
is polynomial in the size of the graph, the param-
eter m.

e Examples: testing for cycles, finding MWST’s
or CC’s, finding the shortest path between
two nodes, testing whether a graph is bipar-
tite.

O None takes more than O(mlogn), which
is surely less than the polynomial O(m?).

¢ On the other hand, some problems seem to
take time that is exponential in the size of
the graph, 2™ or worse.

O Examples include TSP, tripartiteness,
many others, such as the following:

Cliques

A complete subgraph of an undirected graph, i.e.,
a set of nodes of some graph that have every pos-

sible edge.

o The cliqgue problem: given a graph G and an
integer k, is there a clique of at least k& nodes?

Independent Set

Subset S of the nodes of an undirected graph such
that there is no edge between two members of §.

¢ The independent set problem: given a graph
G and an integer k, is there an independent
set with at least & nodes?

e Application: Let nodes = courses. Edge
{u,v} means that courses v and v have at
least one student in common. Here, indepen-
dent set = set of courses whose finals can be
given at the same time.
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Colorability

An undirected graph is k-colorable if we can assign
one of k colors to each node so that no edge has
both ends colored the same.

o The chromatic number of a graph = the least
number k such that it is k-colorable.

o The coloring problem: given a graph G and
an integer k, is G k-colorable?

Example: K, is n-colorable, and its chromatic
number is n.

e It is also k-colorable for any k& > n.

O Note that you do not have to use all k
colors in a k-coloring.

Example: “Bipartite” is a synonym for “2-
colorable,” and “tripartite” is a synonym for “3-
colorable.”

Checking Solutions Can Be Easier Than
Finding Them

Each of the above 3 problems have the interesting
property that, while it is hard to find solutions,
e.g., “find a clique of k nodes,” it is easy (polyno-
mial time to be precise) to check that a proposed
solution really is a solution.

e Check a proposed clique by checking for the
existence of the (’;) edges among the k nodes.
o  Check for an independent set by checking for
the nonexistence of any edge between two

nodes in the proposed set.

e Check a proposed coloring by checking each
edge in the graph and confirming that the
ends are colored differently.

The Class of Problems NP

Problems such as the above whose solutions can be
checked in polynomial time are called NP (nonde-
terministic, polynomial) problems.



Some, e.g., shortest paths, are truly easy;
they can be solved as well as checked in poly-
nomial time.

Others, such as clique, independent set, or
colorability, appear not to be solvable in poly-
nomial time.

While there is no proof that they cannot be
solved in polynomial time, we have the next
best thing: a theory that says many of these
problems are as hard as any in NP.

O These are called NP-complete problems.

If one NP-complete problem were solvable in
polynomial time, then all would be.

O Since the NP-complete problems include
many that have been worked on for cen-
turies, there is strong evidence that all
NP-complete problems really require ex-
ponential time to solve.

See p. 673, FCS for a discussion of
NP-completeness and the first-known NP-
complete problem (tautology for proposi-
tional logic).

Reductions

The way a problem is proved NP-complete is to
“reduce” a known NP-complete problem to it.

The first NP-complete problem, tautology,
was proven in another manner.

We reduce problem A to problem B by devis-
ing a solution for A that uses only a polyno-
mial amount of time plus calls to a subroutine
that solves B.

Example: Clique and Independent Set can be
reduced to one another easily.

Reduce Clique to Independent Set. Given a
graph G and integer k, suppose we want to
know if there is a clique of size k in G.



O  Construct graph H with the same set of
nodes as G and an edge {u,v} iff G does
not have edge {u,v}.

An independent set in H is a clique in G.

Use the “independent set subroutine” to
tell whether H has an independent set of
k nodes.

O Give the same answer that the subrou-
tine gives.

o  Reduce Independent Set to Clique. Given G
and k, suppose we want to know if there is an
independent set of size k.

O Construct H again, and use clique sub-
routine to tell if A has a clique of size

k.

0 Say G has an independent set of size k
iff the subroutine says H has a clique of
size k.

Class Problem

Here are two more problems that happen to be
NP-complete.

o The Node Cover problem: given undirected
graph G and integer k, is there a set C of k
nodes such that each edge of G has at least
one end at a node in C.

O (C is called a node cover.

o The Set Cover problem: given a set of subsets
of {1,2,...,n} and an integer k, determine
whether there is a set of k& subsets such that
each integer between 1 and n is in at least one
of the k subsets.

O The size for Set Cover is the sum of the
sizes of all the subsets.

Find a reduction of Node Cover to Set Cover. The
other way is possible too, but much harder.



