CS109B Notes for Lecture 4/19/95

Automata

Systems often may be modeled by a finite set of
states.

The system is always in one state.
Inputs cause transitions from state to state.
The system has an initial state.

One or more states are accepting: they repre-
sent a successful sequence of inputs.

Why Automata?

Model important kinds of finite-state systems such

as:

Text-reading/processing software, especially
compilers, UNIX commands like grep or awk.

Communication protocols.

Digital hardware components, e.g., mecha-
nisms for sharing memory among processors.

Example: We may be familiar with the problem
of the goat, wolf, and cabbage.

A man, carrying all 3 must cross a river with
a boat that can hold only him and one of the
other three.

If the wolf is left alone with the goat, the goat
will be eaten; if the goat is left alone with the
cabbage, the cabbage will be eaten.

Here, states are “the set of things on the far
shore.”

Initial state indicated with “Start.”

Accepting state(s) indicated with double cir-
cles.

This diagram is special in 2 ways:

1. There is only one input: “cross.”

2. Al transitions are reversible; generally
they are not.

e Yet we can get some useful information, e.g.,
by DFS we can discover a path from the start
state to the accepting state, i.e., from the
state in which all 4 are on the near shore to
the state in which all are on the far shore.

e We could find the length of the shortest path
from the start to each state by Dijkstra’s al-
gorithm.

O Give each arc a weight of 1.
O Minimum distance marked on diagram.

Example: Suppose we wish to read a binary
number left-to-right and test for divisiblity by 6.

e States = remainder mod 6 of integer read so
far.

e Transition rule: on input 0 s — (2s mod 6);
on input 1: s — (2s + 1) mod 6.
Nondeterministic Automata

The “divisible by 6” automaton has the property
that no state has more than one transition out on
any one input.

e Such an automaton is deterministic (a DFA).

O Deterministic automata can be simulated
easily, given a sequence of inputs.

The MWGC automaton has several transitions
from each state on the lone input.

° Call such an automaton nondeterministic (an

NFA).

O It is hard to simulate such automata by
programs, but they are often a help in
design.

Example: Suppose we want to check “divisible
by 6” but reading from right to left.

e Just reverse all the arcs on the automaton
above and swap initial and accepting state
(they are the same in this example).

e Oops— the automaton is no longer determin-

istic.
Why Nondeterminism?

o FEasier design. Example above. Also lexical
analyzers (the UNIX command lex, e.g.) use
nondeterminism in designing compilers.

e Nondeterministic programs (not NFA’s) are
used to describe solutions to NP-complete
problems.

The Subset Construction

We can convert any NFA N to a DFA D.

o The states of D are the sets of states of N.

o The start state of D is the set containing only
the start state of N.

o The accepting states of D are the sets that
include at least one accepting state of N.

° The transitions of D:

1. Let S be a state of D (= a set of states
of N). Let a be an input.

2. The transition from S on input a in DFA
D is to the set of N’s states T' = {t | for
some s in S, N has a transition on a from
s to t}.

Example:

Start

0,1

e Hint: instead of computing all 2™ states of D
(if N has n states), compute the states and
transitions “on demand,” beginning from the
start state.

