CS109B Notes for Lecture 4/24/95

Regular Expressions in UNIX

1. Character Class: $\left[a_{1} a_{2} \cdots a_{n}\right]$ is shorthand for $a_{1}\left|a_{2}\right| \cdots \mid a_{n}$.
$\square \quad$ Also, $\alpha-\beta$ stands for the set of characters with ASCII codes from the code for character α to the code for β.

Example: [a-zA-Z] denotes any of the 52 upper or lower case letters. [-+*/] denotes the four arithmetic operators.

- Note that - must come first to avoid it having a special meaning. [+-*/] denotes / and all the characters between + and $*$.

2. Additional operators:
$\square \quad R$? stands for $\epsilon \mid R$.
$\square \quad R^{+}$stands for $R|R R| R R R \mid \cdots$ (one or more occurrences of R).
3. Special symbols:
\square Dot stands for "any ASCII character except the newline."
$\square \quad$ - stands for the beginning of a line.
$\square \quad \$$ stands for the end of a line.
Example: The file /usr/dict/words contains common English words, one to a line. To find all 5 -letter words beginning with a and with b as the fourth letter, issue the command
```
grep '^a..b.$' /usr/dict/words
```

The two words adobe and alibi are identified.
Example: Words with at least three t's can be found by

```
grep 't.*t.*t' /usr/dict/words
```

- Note that grep scans for a pattern anywhere in the word. There is no need here to "anchor" the pattern at beginning or end.
- 153 words are found. Afterthought is the first and uttermost the last.

Class Problem

How would you search for words that have three t's separated by at most one letter between each consecutive pair?

- E.g., attitude, destitute, tattle.
- Hint: you need the ? operator and the command egrep (because grep doesn't allow ?).

Class Problem

How would you search for all words beginning with
4 or more consonants (excluding y)?

- Only examples: phthalate, schlieren, schnapps.

Operator Precedence

- The unary, postfix operators, *, +, and ? have highest precedence.
- Then comes concatentation.
- Union (\mid) is of lowest precedence.

Example: $a \mid b c$? is grouped $a \mid(b(c ?))$ and denotes the language $\{a, b, b c\}$.

Algebra of RE's

Like the set operators \cup etc., there are many algebraic laws that apply to the regular expression operators.

- One approach: manipulate expressions to show equivalence:
\square Substitute RE's for variables in known equivalences.
$\square \quad$ Substitute an equivalent RE for another.
\square Use transitivity and commutativity of equivalence.

Example: Suppose $R(S \mid T) \equiv R S \mid R T$ is known. Substitute $R \Rightarrow R, S \Rightarrow \emptyset, T \Rightarrow \epsilon$, yields $R(\emptyset \mid \epsilon) \equiv R \emptyset \mid R \epsilon$.

Substitute $R \emptyset \equiv \emptyset ; R \epsilon \equiv R$, yields $R(\emptyset \mid \epsilon) \equiv \emptyset \mid$ R.

Substitute $R \mid \emptyset \equiv R$, yields $R(\emptyset \mid \epsilon) \equiv R$.

- Another approach: show containment in both directions.
$\square \quad$ Remember that the "meaning" of an RE is a language, i.e., a set of strings, so containment of sets makes sense.
- Read catalog of laws, pp. 569ff, FCS.

Example: Let us use a containment of sets argument to prove the following distributive law: $R(S \mid T) \equiv R S \mid R T$.
\subseteq.

- Let w be in $L(R(S \mid T))=L(R) L(S \mid T)$.
- Then $w=r x ; r$ is in $L(R)$ and x is in $L(S \mid$ $T)=L(S) \cup L(T)$.
$\square \quad$ Case 1: x in $L(S)$. Then $r x=w$ is in $L(R S)$. Therefore, w is in $L(R S \mid R T)$.
$\square \quad$ Case 2: x is in $L(T)$. Similarly, $r x=w$ is in $L(R T)$ and in $L(R S \mid R T)$.

2.

- Let w be in $L(R S \mid R T)=L(R S) \cup L(R T)$.
$\square \quad$ Case 1: w is in $L(R S)=L(R) L(S)$. Then $w=r s, r$ is in $L(R)$ and s is in $L(S)$. Thus, s is in $L(S \mid T)=L(S) \cup$ $L(T)$ and $r s=w$ is in $L(R(S \mid T))$.
$\square \quad$ Case 2: w is in $L(R T)$. Similar.

