
CS109B Notes for Lecture 5/3/95Parse Trees� Leaves = terminals or �.� Interior nodes = SC's.� Children of a node labeled < A > form (left-to-right) the body of a production for < A >.Example: Let us use the grammar for MLmatches:(1) <match> ! <patExp> | <match>(2) <match> ! <patExp>(3) <patExp> ! pattern => expHere is one possible parse tree.<match><patExp> | <match><match><patExp> <patExp>| pattern => exppattern => exppattern => exp
YieldThe yield of a parse tree is the labels of the leavesin order from the left.Example: The tree above has yieldpattern = exp | pattern = exp | pattern = expYields and LanguagesThere is a parse tree with root < A > and yield wi� w is in L(<A>). 1

� In \if" direction, proof is an induction on thenumber of \rounds" needed to demonstratethat w is in L(<A>).� In \only if" direction, proof is induction onthe height of a tree.� Note the statement applies to, and must beproved simultaneously for, every SC, not justthe \start" SC (e.g., < match > that we viewas representing our goal language.� See details pp. 607{8, FCS.Ambiguous GrammarsA grammar is ambiguous i� it has two parse treeswith the same yield.Example: Here is a simpler grammar for MLmatches.(1) <match> ! <match> | <match>(2) <match> ! pattern => expUnfortunately, it has two parse trees for the 3-rulematch of our previous example.Why Parse Trees, Ambiguity?� Provide essential structure that enables com-pilers to understand the \meaning" of pro-grams and produce the correct machine code.� Reasonable parser algorithms (that �nd aparse tree for a string of terminals) requireunambiguous grammars.Intuitively, if a string of terminals hastwo di�erent parse trees, how can thecompiler know the structure of the pro-gram it is trying to compile?Typical example: the grammarmust dis-ambiguate a + b � c (is it a + (b � c) or(a+ b)� c?) or the compiler cannot guessthe correct machine code.Class ProblemHere is an ambiguous grammar for nested tuples2

pattern => exp
<match>| <match><match>|pattern => exppattern => exp<match><match>
<match><match>|pattern => exp<match> pattern => exp

<match>| <match>pattern => expas in ML.� A \tuple" is a parenthesized list of \ele-ments," separated by commas.� An < element > can be either a tuple or anatom; the later is a terminal standing for anynon-tuple value, e.g., an int.< tuple > ! (< elList >)< elList > ! < elList > , < elList >< elList > ! < element >< element > ! < tuple >< element > ! atom� First, can you �nd a tuple that has two parsetrees?� Then, can you �x up the grammar to make itunambiguous?� Finally, lists in ML are almost the same, with3

square rather than round brackets. However:1. [] is a legal list, while () is the unit, nota tuple.2. List elements must have the same type,e.g., ((atom),atom) is a legal tuple, but[[atom],atom] is not a legal list.Can you �nd an unambiguous grammar forlists?

4

