CS109B Notes for Lecture 5/3/95

Parse Trees
° Leaves = terminals or e.

e Interior nodes = SC’s.

e Children of a node labeled < 4 > form (left-
to-right) the body of a production for < 4 >.

Example: Let us use the grammar for ML
matches:

(1) <match> — <patExp> | <match>
<match> — <patkxp>
2 tch patExp

(3) <patExp> — pattern => exp

Here is one possible parse tree.

<match>
7 \\
<patExp> <match>
= // S
pattern => exp <patExp> <match>
/N
pattern => exp <patExp>

/N

pattern => exp

Yield

The yield of a parse tree is the labels of the leaves
in order from the left.

Example: The tree above has yield

pattern = exp | pattern = exp | pattern = exp

Yields and Languages

There is a parse tree with root < A > and yield w
iff wisin L(<A4>).

e In “if” direction, proof is an induction on the
number of “rounds” needed to demonstrate
that w is in L(<A>).

e In “only if” direction, proof is induction on
the height of a tree.

e Note the statement applies to, and must be
proved simultaneously for, every SC, not just
the “start” SC (e.g., < match > that we view
as representing our goal language.

o See details pp. 607-8, FCS.

Ambiguous Grammars

A grammar is ambiguous iff it has two parse trees
with the same yield.

Example: Here is a simpler grammar for ML
matches.

(1) <match> — <match> | <match>
(2) <match> — pattern => exp

Unfortunately, it has two parse trees for the 3-rule
match of our previous example.

Why Parse Trees, Ambiguity?

e Provide essential structure that enables com-
pilers to understand the “meaning” of pro-
grams and produce the correct machine code.

e Reasonable parser algorithms (that find a
parse tree for a string of terminals) require
unambiguous grammars.

O Intuitively, if a string of terminals has
two different parse trees, how can the
compiler know the structure of the pro-
gram it is trying to compile?

O Typical example: the grammar must dis-
ambiguate a + bx ¢ (is it a + (b *¢) or
(a+b)*c?) or the compiler cannot guess
the correct machine code.

Class Problem

Here is an ambiguous grammar for nested tuples

2

<match>

/\\

<match> <match>
= // S
pattern => exp <match> <match>
/N aa
pattern => exp pattern => exp
<match>
7 \\
<match> <match>
// S /AN
<match> <match> pattern => exp
/N /N
pattern => exp pattern => exp
as in ML.

e A “tuple” is a parenthesized list of “ele-
ments,” separated by commas.

¢ An < element > can be either a tuple or an
atom; the later is a terminal standing for any
non-tuple value, e.g., an int.

< tuple > — (<elList >)

< ellist > — < ellist > , <ellList >
< ellist > — < element >

< element > — < tuple >
< element > — atom

e First, can you find a tuple that has two parse
trees?

e Then, can you fix up the grammar to make it
unambiguous?

e Finally, lists in ML are almost the same, with

3

square rather than round brackets. However:

1. [] is a legal list, while () is the unit, not
a tuple.

2. List elements must have the same type,
e.g., ((atom) ,atom) is a legal tuple, but
[[atom] ,atom] is not a legal list.

Can you find an unambiguous grammar for
lists?

