CS109A Notes for Lecture 1/19/96

Recursive Definition of Expressions

Ezpressions with binary operators can be defined
as follows.

Basis: An operand is an expression.
e An operand is a variable or constant.

Induction:

1. If E; and E, are expressions, and o is a binary
operator (e.g., + or x), then E; o Ey is an
expression.

2. If E is an expression, then (F) is an expres-
sion.

O Thus, we can build expressions like
z Y z

ety (z+y) (zty)xz

An Interesting Proof

e S(n): An expression E with binary operators
of length n has one more operand than oper-
ators.

Proofis by complete induction on the length (num-
ber of operators, operands, and parentheses) of the
expression.

Basis: n = 1. E must be a single operand. Since
there are no operators, the basis holds.

Induction: Assume S(1),5(2),...,5(n). Let E
have length n +1 > 1. How was E constructed?

a) If by rule (2), E = (E1), and E; has length

n—1.

O By the inductive hypothesis S(n—1), we
know FE; has one more operand than op-
erators.

O But £ and E; have the same number of
operators and operands, so S holds for

E.



b)

If by rule (1), then E = E; o E,.

O Both E; and E; have length < n, be-
cause o is one symbol and

length(E;) + length(E2) = n

O Let F; and E; have a and b operators, re-
spectively. By the inductive hypothesis,
which applies to both E; and E,, They
have a +1 and b + 1 operands, respec-
tively.

O Thus, Fhas (ea+1)4+(b+1)=a+b+2

operands.

O F has a+b+1 operators; the “4+1” is for
the o between F; and FE,.

O Thus F has one more operand than op-
erator, proving the inductive hypothesis.

Note we used all of S(1),...,5(n) in the in-

ductive step.

The fact that “expression” was defined recur-
sively let us break expressions apart and know
that we covered all the ways expressions could

be built.

Recursion

A style of programming and problem-solving
where we express a solution in terms of
smaller instances of itself.

Uses basis/induction just like inductive proofs
and definitions.

O Basis = part that requires no uses of
smaller instances.

O Induction = solution of arbitrary in-
stance in terms of smaller instances.

Why Recursion?

Sometimes it really helps organize your thoughts
(and your code).



Example: A simple algorithm for converting in-
teger 7 > 0 to binary: Last bit is :%2; leading bits
determined by converting /2 until we get down to

0.
main() {

int i;

scanf ("%d", &i);

while(i>0) {
putchar(’0’ + i%2);
i/= 2;

}

putchar(’\n’);
+

e Only one problem: the answer comes out
backwards.

e  We can fix the problem if we think recursively:
Basis: If : = 0, do nothing.

Induction: If ¢ > 0, recursively convert z/2.
Then print the final bit, %2.

void convert(int i) {
if(i>0) {
convert(i/2);
putchar(?0’ + i%2);

+

+

main() {
int i;
scanf ("%d", &i);
convert(i);
putchar(’\n’);

+

Class Problem for Next Wednesday

Prove that the above program converts its input
to binary.

e What is the inductive hypothesis? The basis?
The inductive step?



