CS109A Notes for Lecture 1/19/96

Recursive Definition of Expressions

Expressions with binary operators can be defined as follows.

Basis: An operand is an expression.

• An operand is a variable or constant.

Induction:

- 1. If E_1 and E_2 are expressions, and o is a binary operator (e.g., + or *), then E_1 o E_2 is an expression.
- 2. If E is an expression, then (E) is an expression.
 - ☐ Thus, we can build expressions like

$$egin{array}{cccc} x & y & z \ x+y & (x+y) & (x+y)*z \end{array}$$

An Interesting Proof

• S(n): An expression E with binary operators of length n has one more operand than operators.

Proof is by complete induction on the *length* (number of operators, operands, and parentheses) of the expression.

Basis: n = 1. E must be a single operand. Since there are no operators, the basis holds.

Induction: Assume $S(1), S(2), \ldots, S(n)$. Let E have length n+1>1. How was E constructed?

- a) If by rule (2), $E=(E_1)$, and E_1 has length n-1.
 - \square By the inductive hypothesis S(n-1), we know E_1 has one more operand than operators.
 - \square But E and E_1 have the same number of operators and operands, so S holds for E.

- b) If by rule (1), then $E = E_1$ o E_2 .
 - \square Both E_1 and E_2 have length $\leq n$, because o is one symbol and

$$length(E_1) + length(E_2) = n$$

- Let E_1 and E_2 have a and b operators, respectively. By the inductive hypothesis, which applies to both E_1 and E_2 , They have a+1 and b+1 operands, respectively.
- \square Thus, E has (a+1)+(b+1)=a+b+2 operands.
- \square E has a+b+1 operators; the "+1" is for the o between E_1 and E_2 .
- \Box Thus E has one more operand than operator, proving the inductive hypothesis.
- Note we used all of $S(1), \ldots, S(n)$ in the inductive step.
- The fact that "expression" was defined recursively let us break expressions apart and know that we covered all the ways expressions could be built.

Recursion

- A style of programming and problem-solving where we express a solution in terms of smaller instances of itself.
- Uses basis/induction just like inductive proofs and definitions.
 - \square Basis = part that requires no uses of smaller instances.
 - ☐ Induction = solution of arbitrary instance in terms of smaller instances.

Why Recursion?

Sometimes it really helps organize your thoughts (and your code).

Example: A simple algorithm for converting integer i > 0 to binary: Last bit is i%2; leading bits determined by converting i/2 until we get down to 0.

```
main() {
    int i;
    scanf("%d", &i);
    while(i>0) {
        putchar('0' + i%2);
        i /= 2;
    }
    putchar('\n');
}
```

- Only one problem: the answer comes out backwards.
- We can fix the problem if we think recursively:

Basis: If i = 0, do nothing.

Induction: If i > 0, recursively convert i/2. Then print the final bit, i%2.

```
void convert(int i) {
    if(i>0) {
        convert(i/2);
        putchar('0' + i%2);
    }
}
main() {
    int i;
    scanf("%d", &i);
    convert(i);
    putchar('\n');
}
```

Class Problem for Next Wednesday

Prove that the above program converts its input to binary.

• What is the inductive hypothesis? The basis? The inductive step?