
CS109A Notes for Lecture 1/19/96Recursive De�nition of ExpressionsExpressions with binary operators can be de�nedas follows.Basis: An operand is an expression.� An operand is a variable or constant.Induction:1. If E1 and E2 are expressions, and o is a binaryoperator (e.g., + or �), then E1 o E2 is anexpression.2. If E is an expression, then (E) is an expres-sion.Thus, we can build expressions likex y zx+ y (x + y) (x + y) � zAn Interesting Proof� S(n): An expression E with binary operatorsof length n has one more operand than oper-ators.Proof is by complete induction on the length (num-ber of operators, operands, and parentheses) of theexpression.Basis: n = 1. E must be a single operand. Sincethere are no operators, the basis holds.Induction: Assume S(1); S(2); : : : ; S(n). Let Ehave length n+ 1 > 1. How was E constructed?a) If by rule (2), E = (E1), and E1 has lengthn� 1.By the inductive hypothesis S(n�1), weknow E1 has one more operand than op-erators.But E and E1 have the same number ofoperators and operands, so S holds forE. 1



b) If by rule (1), then E = E1 o E2.Both E1 and E2 have length � n, be-cause o is one symbol andlength(E1) + length(E2) = nLet E1 andE2 have a and b operators, re-spectively. By the inductive hypothesis,which applies to both E1 and E2, Theyhave a + 1 and b + 1 operands, respec-tively.Thus, E has (a+1)+ (b+1) = a+ b+2operands.E has a+b+1 operators; the \+1" is forthe o between E1 and E2.Thus E has one more operand than op-erator, proving the inductive hypothesis.� Note we used all of S(1); : : : ; S(n) in the in-ductive step.� The fact that \expression" was de�ned recur-sively let us break expressions apart and knowthat we covered all the ways expressions couldbe built.Recursion� A style of programming and problem-solvingwhere we express a solution in terms ofsmaller instances of itself.� Uses basis/induction just like inductive proofsand de�nitions.Basis = part that requires no uses ofsmaller instances.Induction = solution of arbitrary in-stance in terms of smaller instances.Why Recursion?Sometimes it really helps organize your thoughts(and your code). 2



Example: A simple algorithm for converting in-teger i > 0 to binary: Last bit is i%2; leading bitsdetermined by converting i=2 until we get down to0. main() {int i;scanf("%d", &i);while(i>0) {putchar('0' + i%2);i /= 2;}putchar('\n');}� Only one problem: the answer comes outbackwards.� We can �x the problem if we think recursively:Basis: If i = 0, do nothing.Induction: If i > 0, recursively convert i=2.Then print the �nal bit, i%2.void convert(int i) {if(i>0) {convert(i/2);putchar('0' + i%2);}}main() {int i;scanf("%d", &i);convert(i);putchar('\n');}Class Problem for Next WednesdayProve that the above program converts its inputto binary.� What is the inductive hypothesis? The basis?The inductive step?3


