CS109B Notes for Lecture 5/19/95

Why Resolution?

Given how ugly search for proofs seems to be, and given that in general it takes exponential time to find a proof of a true statement of length n, it is remarkable how simple finding proofs can be when a technique called "resolution" is used.

Outline of Resolution

1. Convert the hypotheses and conclusion into a product (AND) of clauses.

 \square A clause is a sum (OR) of literals.

2. "Resolve" pairs of clauses until a clause with no literals (which is equivalent to 0 (FALSE) is produced.

• Such an event signals that the hypothesis does follow from the conclusion. From the sequence of resolutions a proof can be found.

 \square Thus, a successful resolution is a proof.

Converting an Expression to Product-of-Sums Form

1. Replace operators other than AND, OR, NOT by their equivalents in terms of those three operators.

 \square e.g., $E \to F$ becomes $\bar{E} + F$; $E \equiv F$ becomes $(\bar{E} + F)(\bar{F} + E)$.

2. Use DeMorgan's laws and double negation to push NOT's below AND and OR.

3. Use the distributive law of OR over AND to complete the job.

Example: Consider $NOT(pr \rightarrow s)$.

1. NOT(NOT(pr) + s).

2. Push inner NOT: NOT $(\bar{p} + \bar{r} + s)$. Push outer NOT: $pr\bar{s}$.

1

3. Not needed; we already have a product of sums (of one literal each).

Example: $p\bar{q}+r$ needs only step (3). $(p+r)(\bar{q}+r)$.

The Resolution Operation

Based on the tautology $(p+q)(\bar{p}+r) \rightarrow (q+r)$.

- Match the left side, looking for two clauses that have between them some variable, say p, and its negation.
- Add to the set of clauses the OR of everything in either clause except p and \bar{p} .

Example: $(q+r+\bar{s})$ and $(r+\bar{q}+\bar{t})$ yield $(r+\bar{s}+\bar{t})$.

Example: (p+q+r) and $(\bar{p}+\bar{q}+s)$ yield $(q+\bar{q}+r+s)$, but that is equivalent to 1 and therefore uninteresting.

• You don't need to "prove" TRUE.

Direct Use of Resolution

- 1. Convert the hypotheses and conclusion to product-of-sums form.
- 2. Starting with the hypotheses' clauses, resolve until you have proved all the conclusion's clauses.

Example: Let us prove $p \to q$ and $qr \to s$ imply $pr \to s$.

- From the first hypothesis: $(\bar{p} + q)$.
- From the second hypothesis: $(\bar{q} + \bar{r} + s)$.
- To prove, from the conclusion: $(\bar{p} + \bar{r} + s)$.
- The third follows from the first two by one resolution using q and \bar{q} .

Resolution Plus Contradiction

We were very lucky that time; there was only one thing to do and it was exactly right.

- A method that involves even less "guessing" in general is to negate the conclusion, convert the negated conclusion to product-of-sums form, and try to derive from that and the hypotheses a false clause, i.e., one with no literals at all.
 - ☐ Good heuristic, because it lets us favor making smaller clauses, heading toward a 0-literal clause.
 - \square Method is justified by the tautology $(par q \to 0) \equiv (p \to q); \ p = ext{hypotheses}, \ q = ext{conclusion}.$

Example: Again let us prove $p \to q$ and $qr \to s$ imply $pr \to s$.

- From the first hypothesis: $(\bar{p} + q)$.
- From the second hypothesis: $(\bar{q} + \bar{r} + s)$.
- From the negation of the conclusion (as per first example of these notes) the three one-literal clauses: $(p)(r)(\bar{s})$.

1)	$(\bar{p}+q)$	${ m Hypothesis}$
2)	$(\bar{q}+\bar{r}+s)$	${ m Hypothesis}$
3)	(p)	Conclusion
4)	(r)	Conclusion
5)	(\bar{s})	Conclusion
6)	(q)	(1) + (3)
7)	$(\bar{r}+s)$	(2) + (6)
8)	(s)	(4) + (7)
9)	0	(5) + (8)

Class Problem

We wish to prove that from the hypotheses p+q, $p \rightarrow r$, and $q \rightarrow r$ we can conclude r.

- Part 1: Convert the hypotheses and negation of the conclusion to clauses.
- Part 2: Derive 0 from these clauses. What have you actually proven?