
CS109A Notes for Lecture 1/31/96Measuring the Running Time of ProgramsFix a measure of the \size" n of the data to whicha program is being applied.Example: For integer arguments, the value isoften a good size measure. For strings: the length.� Compute a big-oh upper bound on the run-ning time of a program by induction on thecomplexity of program structures, i.e., thedepth to which structures are nested.Try to make the bound simple and tight.� In the following, we assume there are no func-tion calls in the program except for I/O op-erations.Basis: Simple statements contain no statementsnested within them. In C:1. Assignment statements.2. Goto's, including break, continue, return.3. Input/Output using function calls like printfor getchar().� Fundamental assumption: Application of anoperator takes a constant amount of time.Write \some constant" as O(1).Operators include arithmetic, compari-son, logical.ML has some exceptions: concatenationof strings or lists.� Thus, in C every simple statement takes O(1)time.Induction: Complex statements built from sim-ple statements by recursive application of:1. Loop formers: for-, while-, repeat-.2. Branching statements: if� � �else-, if-, case-.3. Block formers: {� � �}.1



Structure Trees� node = complex statement; its children arethe constituent statements.Example:main() {int i;(1) scanf("%d", &i);(2) while(i>0) {(3) putchar('0' + i%2);(4) i /= 2;}(5) putchar('\n');} BlockWhile2{41{5Block3{41 53 4Details of the Induction� Blocks: Running time bound = sum of thebounds of the constituents.Use summation law to drop from the sumany term that is big-oh of another term.� Conditionals: Bound = O(1) + larger ofbounds for the if- and else- parts.O(1) is for cost of the test | usually ne-glectable.� Loops: Bound is usually the maximum num-ber of times around the loop � the bound onthe time to execute the loop body.2



But we must include O(1) for the incre-ment and test each time around the loop.The possibility that the loop is executed0 times must be considered. Then, O(1)for the initialization and �rst test is thetotal cost.Example: Consider binary-conversion function.Size of data = i.� Lines 1, 3, 4, 5 each O(1) by the basis.� Block of 3{4 is O(1) +O(1) = O(1).� While of 2{4 iterates at most log2 i times.Bound on body times number of iterations =O(1) � log2 i = O(log i).� Block of 1{5 is O(1) + O(log i) + O(1) =O(log i).� i.e., it takes O(log i) time to convert i to bi-nary by this function.Triangular Double LoopsSometimes we need to \give up" trying to tightenthe upper bound on running time. Example: aninner loop iterates di�erent numbers of times.Example: Insertion sort : After i iterations, the�rst i elements of an array are sorted. At iterationi + 1 we move the (i + 1)st element forward untilit meets an element smaller than it.void isort(int A[], int n) {int i,j;(1) for(i=1; i<n; i++) {(2) j = i;(3) while(j>0 && A[j-1]>A[j]) {(4) swap(j-1, j); /* exchange A[j-1] with A[j] */(5) j--;}}} 3



4{5block4 while3{5 52 blockfor1{52{5
� Input \size" = n = length of array A.� Lines 2, 4, 5 are O(1); note swap is short for3 assignment statements.� Block 4{5 is O(1) +O(1) = O(1).� While-loop 3{5 iterates at most i times, forj = i down to j = 1.But it may terminate earlier if A[j�1] �A[j] ever holds.Thus, i�O(1) = O(i) is an upper boundon lines 3{5.� Block 2{5 takes time O(1) +O(i) = O(i).� For-loop 1{5 iterates n � 1 times. The bodytakes O(i) time.But i changes within the loop and makesno sense outside the loop, so we cannotsay the for-loop takes O(ni) time.But n � i, so O(n) is an upper bound onthe while-loop of 3{5.Then, the upper bound on the for-loop isn�O(n) = O(n2).� Nothing lost. If we summed the times foreach iteration of the for-loop we would getPn�1i=1 O(i) = O�n(n� 1)=2� = O(n2).4


