CS109A Notes for Lecture 2/5/96

Programs with Function Calls

Establish a size measure n for each function.
Let 7% (n) be the running time of function f.

When evaluating a simple or compound state-
ment, include the running times of any func-
tion calls.

Do not put big-oh around the functions’ run-
ning times, because we must keep track care-
fully of how many calls there are.

Nonrecursive Functions

If no recursion, we can order the function evalua-
tions so each function calls only previously evalu-

ated

Rec

functions.

Example pp. 128-130, FCS.

ursions

Define running time 7% (n) recursively in terms of
itself (with arguments smaller than n).

Solve the resulting recurrence relation by one
of several “tricks”: repeated expansion or
“guess-and-check.”

When combining times of function calls like
T (n) with big-oh expressions, remember that
each call takes at least O(1).

O  Thus, T¢(n) subsumes O(1); e.g., T¢(n)+
O(1) can be replaced by T (n).

However, in general, big-oh and T (n) expres-
sions cannot be combined.

Example: Insertion-sort in ML:

) [x]

)| insert(x, y::ys) =

) if x>y

) then y::insert(x,ys)
) else x::y::ys;
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) fun isort(mnil) =

) nil

)| isort(x::xs) =

0) insert(x, isort(xs));

e Hint for ML function analysis: A pattern is
like nested if’s:

if (first pattern matches)
evaluate first expression;

else if(second pattern matches)
evaluate second expression;

o Let Tjs(n) and Tisori(n) be the two func-

tions’ running times.

O n is the length of the input list in each
case.

Analysis of insert

e Lines 1,2, 3,4, 6 take O(1) time.

e Line 5 takes O(1) + Tins(n — 1).
O  O(1) for the cons.

O  Tins(n — 1) for the recursive call on the
tail of the list.

o If-expression 4-6 takes
O(1) + max(O(1), O(1) + Tins(n — 1))
O  Simplifies to O(1) + Tips(n — 1).



e Pattern match of 3-6 takes O(1)+Tj,s(n—1).

° Pattern match and test of lines 1-6 takes

O(1) + max(O(l), O(1) + Tins(n — 1))
O  Simplifies to O(1) + Tips(n — 1).

The Recurrence Relation for insert

Basis: If n = 0, only lines 1 and 2 execute.
Tins (0) = O(1)

Induction: If n > 0:
Tins(n) = O(1) + Tona(n — 1)

e Replace O(1)’s by concrete constants:
Tins(0) =a
Tone(n) = b+ Ths(n — 1)

e Repeated expansion gives:
Tine(n) = b (b4 Tina(n — 2))
Tins(n) = 2b+ (b + Tins(n —3))
Thne(n) = (1 — 1)b + (b + Tins (0))
Tins(n) =nb+a

o Restore the big-oh instead of unknown con-

stants @ and b: Tins(n) = O(n).

Analysis of isort

(7) fun isort(nil) =

(8) nil
9) 1 isort(x::xs) =
(10) insert(x, isort(xs));

e Lines 7,8, 9 are O(1).



e Lor line 10:
O isort(x,xs) takes time Tisori(n — 1).

O Then applying insert to a list of length
n takes time O(n) by previous example.

O  Thus, line 10 takes O(n) + Tisore (1).

° Match of 9-10 and if-match of 7-10 also take
O(TL) + ﬂsort(n)-

Basis: If n = 0, only lines 7-8 execute.
Tisore(0) = O(1)
Induction: If n > 0:
Thaore (n) = O(n) + Thaope(n — 1)
e Replace O(1) by a and O(n) by bn.

ﬂsort(o) =a
ﬂsort(n) =bn + ﬂsort(n - ]-)

e Repeated expansion gives:

ﬂsort(n) =bn+ <b(n - 1) + j—lisort(n - 2))

Tisort(n) = b(2n — 1) + (b(n — 2) + Tisort (n — 3))

ﬂsort(n) = bz:b:_ol(n - Z) + ﬂsort(o)
Tisort(n) =n(n—1)b/2+a
o Restore the big-oh instead of unknown con-
stants @ and b: Tisore(n) = O(n?).
General rule: T(0) = a, T(n) = f(n) +T(n — 1)
vields T'(n) = nf(n).
O Warning: f(n) must be at most a poly-
nomial and increasing in n.



