CS109A Notes for Lecture 2/7/96

Analysis of Mergesort

Input size n = length of list to be sorted; Ty, s(n)
= running time of mergesort.

1. Call split on list of length n; takes O(n) time
(in book).

2.  Then, mergesort calls itself on two lists of size

n/2, taking 2T,,5(n/2).

3. Finally, call merge on two lists of total length
n, taking O(n) time (in book).

¢ Whenn =1 (basis), there are no calls; merge-
sort takes O(1) time.

Recurrence
Tms(1) = O(1)
Tms(n) = O(n) + 2T,,5(n/2)

e Eliminate O(1) and O(n) in favor of concrete
constants:

Trms(l) =a

Trms(n) =bn +2T,5(n/2)
Guess-And-Check Solutions
“Guess” the form of an upper bound on T'(n).

e Try to prove the bound inductively; in the
process, we may get some constraints on pa-
rameters in the guessed form.

e Statement S(n): (Not quite like pp. 148-9)
Tms(n) < cnlog,n + dn

e  We prove S(n) for n a power of 2.

e c and d are parameters to be discovered.

Basis: If n = 1, we have T,,5(1) = a. If we want
a=Tms(1) < (c)(1)(logy 1)+ (d)(1) we must have
d > a because log, 1 = 0.

Induction: Assume

Trms(n/2) < (en/2)logy(n/2) + dn/2



e Then Ths(n) = bn + 2T(n/2) < bn +
cn(logyn — 1) + dn.

e We want to show T,,5(n) < cnlog,n + dn.
Only way: show

bn + cnlog,n — cn + dn < cnlog, n + dn
i.e., bn < cn.

e Conclusion: Proof goes through if d > a and
c>b. eg.,let d=aand c=0b:

Trms(n) < bnlog,n + an
i.e., Tms(n) is O(nlogn).

An Exponential Recurrence

How many strings of length n over symbols 0, 1,
2 have no identical, consecutive symbols?

Basis: T(1) = 3; they are "0", "1" "2",
Induction: T(n) = 2T(n—1) for n > 1. Expand:
T(n)=4T(n —2)
T(n) =8T(n —3)
T(n) =2""1T(1) =3 x 21

Varieties of Recurrences

T(n) = f(n) + (i) (21((272})))

1 nf(n) if poly. lognif f(n) =1
f(n) for larger f(n) for others

nlogn if f(n) =n
f(n) for larger

9 exponential

Linear Recursions

These are recursions in which T'(n) is defined in
terms of T'(n — a) for various integers a > 0.

Example: How many strings of a’s, b’s, and c¢’s
are there such that all b’s appear in consecutive
pairs and all ¢’s appear in consecutive pairs. a’s
may appear anywhere.



o We can define this set of strings recursively:
Basis: €, the empty string, is acceptable.

Induction: If w is an acceptable string, then so
are wa, wbb, and wece.

e Thus, acceptable strings include a, bb, bba,
acc, etc.

e Let T(n) be the number of acceptable strings
of length n.

Basis: T(0) =1 and T'(1) = 1 (the strings € and

a, are counted, respectively).

Induction: T'(n) = T(n —1) 4 2T (n — 2). Every
acceptable string of length n either is an accept-
able string of length n — 1 followed by a, or an
acceptable string of length n — 2 followed by bb or
cc.

Solving Linear Recursions

Expansion doesn’t usually work, but guess-and-
check works if we know the trick.

e  Guess an exponential solution T'(n) = A™.

e  Substitute this guess for T'(n) and T'(n — k)
for all k’s that appear.

e Divide through by A to the largest possible
power.

o Result is a polynomial in A that equals 0.
Solve this equation for possible values of A,
say A1, Ag, ..., Ap.

o AssumeT(n) =Y., c;A;.

e Use basis values to solve for the ¢;’s.
Example: Consider T(n) = T'(n—1)+2T(n—2).
e Substitute T(n) = A™: A" = A"~1 4 2A""2,
o Divideby A"2: A2 = XA +2,0r XA2-X—-2=0.
e Solve quadratic equation: A =2, A = —1.

e  Trial solution: T(n) = a2™ 4+ B(—1)".



¢ Usebasisforn=0,1: a+8=1;2a0—-F=1.
e Solve: a=2/3;8=1/3.
¢ Thus, T(n) = (27 4+ (-1)")/3.
O For n = 23,4,5,..., T(n) =
3,5,11,21,.. ..
Glitch: Multiple Roots of Polynomial

If A\; appears £ > 1 times as a root of the

polynomial, then you need to use terms A7,
nA?, ..., nk7IAR,

Example: T(n) —4T(n — 1) + 4T(n —2) =0.
Assume basis: T(0) =2; T(1) =

e )\ =2is a double root.
e  Trial solution is T'(n) = a2™ + fn2"™.
e Basis gives a = 2; 2a + 28 = 6.

Solution: T'(n) = 27T 1 n2™ or
T(n)=(n+2)2"



