CS109A Notes for Lecture 2/7/96

Analysis of Mergesort

Input size $n=$ length of list to be sorted; $T_{m s}(n)$
$=$ running time of mergesort.

1. Call split on list of length n; takes $O(n)$ time (in book).
2. Then, mergesort calls itself on two lists of size $n / 2$, taking $2 T_{m s}(n / 2)$.
3. Finally, call merge on two lists of total length n, taking $O(n)$ time (in book).

- When $n=1$ (basis), there are no calls; mergesort takes $O(1)$ time.

Recurrence

$$
\begin{aligned}
& T_{m s}(1)=O(1) \\
& T_{m s}(n)=O(n)+2 T_{m s}(n / 2)
\end{aligned}
$$

- Eliminate $O(1)$ and $O(n)$ in favor of concrete constants:

$$
\begin{aligned}
& T_{m s}(1)=a \\
& T_{m s}(n)=b n+2 T_{m s}(n / 2)
\end{aligned}
$$

Guess-And-Check Solutions

"Guess" the form of an upper bound on $T(n)$.

- Try to prove the bound inductively; in the process, we may get some constraints on parameters in the guessed form.
- Statement $S(n)$: (Not quite like pp. 148-9)

$$
T_{m s}(n) \leq c n \log _{2} n+d n
$$

- We prove $S(n)$ for n a power of 2 .
- $\quad c$ and d are parameters to be discovered.

Basis: If $n=1$, we have $T_{m s}(1)=a$. If we want $a=T_{m s}(1) \leq(c)(1)\left(\log _{2} 1\right)+(d)(1)$ we must have $d \geq a$ because $\log _{2} 1=0$.
Induction: Assume

$$
T_{m s}(n / 2) \leq(c n / 2) \log _{2}(n / 2)+d n / 2
$$

- Then $T_{m s}(n)=b n+2 T_{m s}(n / 2) \leq b n+$ $c n\left(\log _{2} n-1\right)+d n$.
- We want to show $T_{m s}(n) \leq c n \log _{2} n+d n$. Only way: show

$$
b n+c n \log _{2} n-c n+d n \leq c n \log _{2} n+d n
$$

i.e., $b n \leq c n$.

- Conclusion: Proof goes through if $d \geq a$ and $c \geq b$. e.g., let $d=a$ and $c=b$:

$$
T_{m s}(n) \leq b n \log _{2} n+a n
$$

i.e., $T_{m s}(n)$ is $O(n \log n)$.

An Exponential Recurrence

How many strings of length n over symbols 0,1 , 2 have no identical, consecutive symbols?

Basis: $T(1)=3$; they are " 0 ", "1", " 2 ".
Induction: $T(n)=2 T(n-1)$ for $n>1$. Expand:

$$
\begin{aligned}
& T(n)=4 T(n-2) \\
& T(n)=8 T(n-3) \\
& \cdots \\
& T(n)=2^{n-1} T(1)=3 \times 2^{n-1}
\end{aligned}
$$

Varieties of Recurrences

$T(n)=f(n)+\binom{1}{2}\binom{T(n-1)}{T(n / 2)}$

	$T(n-1)$	$T(n / 2)$
1	$n f(n)$ if poly. $f(n)$ for larger	$\log n$ if $f(n)=1$ $f(n)$ for others
2	exponential	$n \log n \text { if } f(n)=n$ $f(n)$ for larger

Linear Recursions

These are recursions in which $T(n)$ is defined in terms of $T(n-a)$ for various integers $a>0$.

Example: How many strings of a 's, b 's, and c 's are there such that all b 's appear in consecutive pairs and all c 's appear in consecutive pairs. a 's may appear anywhere.

- We can define this set of strings recursively:

Basis: ϵ, the empty string, is acceptable.
Induction: If w is an acceptable string, then so are $w a, w b b$, and $w c c$.

- Thus, acceptable strings include $a, b b, b b a$, $a c c$, etc.
- Let $T(n)$ be the number of acceptable strings of length n.

Basis: $T(0)=1$ and $T(1)=1$ (the strings ϵ and a, are counted, respectively).

Induction: $T(n)=T(n-1)+2 T(n-2)$. Every acceptable string of length n either is an acceptable string of length $n-1$ followed by a, or an acceptable string of length $n-2$ followed by $b b$ or cc.

Solving Linear Recursions

Expansion doesn't usually work, but guess-andcheck works if we know the trick.

- Guess an exponential solution $T(n)=\lambda^{n}$.
- Substitute this guess for $T(n)$ and $T(n-k)$ for all k 's that appear.
- Divide through by λ to the largest possible power.
- Result is a polynomial in λ that equals 0 . Solve this equation for possible values of λ, say $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$.
- Assume $T(n)=\sum_{i=1}^{r} c_{i} \lambda_{i}$.
- Use basis values to solve for the c_{i} 's.

Example: Consider $T(n)=T(n-1)+2 T(n-2)$.

- \quad Substitute $T(n)=\lambda^{n}: \lambda^{n}=\lambda^{n-1}+2 \lambda^{n-2}$.
- Divide by $\lambda^{n-2}: \lambda^{2}=\lambda+2$, or $\lambda^{2}-\lambda-2=0$.
- Solve quadratic equation: $\lambda=2, \lambda=-1$.
- Trial solution: $T(n)=\alpha 2^{n}+\beta(-1)^{n}$.
- Use basis for $n=0,1: \alpha+\beta=1 ; 2 \alpha-\beta=1$.
- \quad Solve: $\alpha=2 / 3 ; \beta=1 / 3$.
- Thus, $T(n)=\left(2^{n+1}+(-1)^{n}\right) / 3$.
$\begin{aligned} & \square \text { For } n=2,3,4,5, \ldots, \\ & \\ & 3,5,11,21, \ldots .\end{aligned}$

Glitch: Multiple Roots of Polynomial

If λ_{i} appears $k>1$ times as a root of the polynomial, then you need to use terms λ_{i}^{n}, $n \lambda_{i}^{n}, \ldots, n^{k-1} \lambda_{i}^{n}$.

Example: $T(n)-4 T(n-1)+4 T(n-2)=0$. Assume basis: $T(0)=2 ; T(1)=6$.

- $\lambda=2$ is a double root.
- Trial solution is $T(n)=\alpha 2^{n}+\beta n 2^{n}$.
- Basis gives $\alpha=2 ; 2 \alpha+2 \beta=6$.
- Solution: $T(n)=2^{n+1}+n 2^{n}$, or

$$
T(n)=(n+2) 2^{n}
$$

