Analysis of Mergesort

Input size $n = \text{length of list to be sorted}; T_{ms}(n)$ = running time of mergesort.

- 1. Call split on list of length n; takes O(n) time (in book).
- 2. Then, mergesort calls itself on two lists of size n/2, taking $2T_{ms}(n/2)$.
- 3. Finally, call merge on two lists of total length n, taking O(n) time (in book).
- When n = 1 (basis), there are no calls; mergesort takes O(1) time.

Recurrence

$$egin{aligned} T_{ms}(1) &= O(1) \ T_{ms}(n) &= O(n) + 2T_{ms}(n/2) \end{aligned}$$

• Eliminate O(1) and O(n) in favor of concrete constants:

$$egin{aligned} T_{ms}(1) &= a \ T_{ms}(n) &= bn + 2T_{ms}(n/2) \end{aligned}$$

Guess-And-Check Solutions

"Guess" the form of an upper bound on T(n).

- Try to prove the bound inductively; in the process, we may get some constraints on parameters in the guessed form.
- Statement S(n): (Not quite like pp. 148-9)

 $T_{ms}(n) \leq cn \log_2 n + dn$

- We prove S(n) for n a power of 2.
- c and d are parameters to be discovered.

Basis: If n = 1, we have $T_{ms}(1) = a$. If we want $a = T_{ms}(1) \leq (c)(1)(\log_2 1) + (d)(1)$ we must have $d \geq a$ because $\log_2 1 = 0$.

Induction: Assume

$$T_{ms}(n/2) \leq (cn/2) \log_2(n/2) + dn/2$$

- Then $T_{ms}(n) = bn + 2T_{ms}(n/2) \le bn + cn(\log_2 n 1) + dn.$
- We want to show $T_{ms}(n) \leq cn \log_2 n + dn$. Only way: show

 $bn + cn\log_2 n - cn + dn \leq cn\log_2 n + dn$

i.e., $bn \leq cn$.

• Conclusion: Proof goes through if $d \ge a$ and $c \ge b$. e.g., let d = a and c = b:

 $T_{ms}(n) \leq bn \log_2 n + an$

i.e., $T_{ms}(n)$ is $O(n \log n)$.

An Exponential Recurrence

How many strings of length n over symbols 0, 1, 2 have no identical, consecutive symbols?

Basis: T(1) = 3; they are "0", "1", "2".

Induction: T(n) = 2T(n-1) for n > 1. Expand:

Varieties of Recurrences

$T(n)=f(n)+{1\choose 2}{T(n-1)\choose T(n/2)}$		
	T(n-1)	T(n/2)
1	nf(n) if poly.	$\log n ext{ if } f(n) = 1$
-	f(n) for larger	f(n) for others
2	exponential	$n\log n ext{ if } f(n) = n \ f(n) ext{ for larger}$

Linear Recursions

These are recursions in which T(n) is defined in terms of T(n-a) for various integers a > 0.

Example: How many strings of a's, b's, and c's are there such that all b's appear in consecutive pairs and all c's appear in consecutive pairs. a's may appear anywhere.

• We can define this set of strings recursively:

Basis: ϵ , the empty string, is acceptable.

Induction: If w is an acceptable string, then so are wa, wbb, and wcc.

- Thus, acceptable strings include a, bb, bba, acc, etc.
- Let T(n) be the number of acceptable strings of length n.

Basis: T(0) = 1 and T(1) = 1 (the strings ϵ and a, are counted, respectively).

Induction: T(n) = T(n-1) + 2T(n-2). Every acceptable string of length n either is an acceptable string of length n-1 followed by a, or an acceptable string of length n-2 followed by bb or cc.

Solving Linear Recursions

Expansion doesn't usually work, but guess-andcheck works if we know the trick.

- Guess an exponential solution $T(n) = \lambda^n$.
- Substitute this guess for T(n) and T(n-k) for all k's that appear.
- Divide through by λ to the largest possible power.
- Result is a polynomial in λ that equals 0. Solve this equation for possible values of λ, say λ₁, λ₂,..., λ_r.
- Assume $T(n) = \sum_{i=1}^{r} c_i \lambda_i$.
- Use basis values to solve for the c_i 's.

Example: Consider T(n) = T(n-1) + 2T(n-2).

- Substitute $T(n) = \lambda^n$: $\lambda^n = \lambda^{n-1} + 2\lambda^{n-2}$.
- Divide by λ^{n-2} : $\lambda^2 = \lambda + 2$, or $\lambda^2 \lambda 2 = 0$.
- Solve quadratic equation: $\lambda = 2, \lambda = -1$.
- Trial solution: $T(n) = \alpha 2^n + \beta (-1)^n$.

- Use basis for n = 0, 1: $\alpha + \beta = 1$; $2\alpha \beta = 1$.
- Solve: $\alpha = 2/3; \beta = 1/3.$
- Thus, $T(n) = (2^{n+1} + (-1)^n)/3$.
 - $\square \quad {
 m For} \quad n = 2, 3, 4, 5, \ldots, \quad T(n) = 3, 5, 11, 21, \ldots$

Glitch: Multiple Roots of Polynomial

If λ_i appears k > 1 times as a root of the polynomial, then you need to use terms λ_i^n , $n\lambda_i^n, \ldots, n^{k-1}\lambda_i^n$.

Example: T(n) - 4T(n-1) + 4T(n-2) = 0. Assume basis: T(0) = 2; T(1) = 6.

- $\lambda = 2$ is a double root.
- Trial solution is $T(n) = \alpha 2^n + \beta n 2^n$.
- Basis gives $\alpha = 2$; $2\alpha + 2\beta = 6$.
- Solution: $T(n) = 2^{n+1} + n2^n$, or

$$T(n) = (n+2)2^n$$