
1

Near-Neighbor Search

Applications

Matrix Formulation

Minhashing

2

Example Application: Face
Recognition

�We have a database of (say) 1 million
face images.

�We want to find the most similar
images in the database.

�Represent faces by (relatively) invariant
values, e.g., ratio of nose width to eye
width.

3

Face Recognition – (2)

�Each image represented by a large
number (say 1000) of numerical
features.

�Problem: given a face, find those in the
DB that are close in at least ¾ (say) of
the features.

4

Face Recognition – (3)

�Many-one problem : given a new face,
see if it is close to any of the 1 million
old faces.

�Many-Many problem : which pairs of
the 1 million faces are similar.

5

Simple Solution

�Represent each face by a vector of
1000 values and score the comparisons.

�Sort-of OK for many-one problem.

�Out of the question for the many-many
problem (106*106*1000/2 numerical
comparisons).

�We can do better!

6

Multidimensional Indexes
Don’t Work

New face:
[6,14,…]

0-4

5-9

10-14
. . .

Dimension 1 =

Surely we’d
better look
here.

Maybe look
here too, in
case of a
slight error.

But the first dimension could
be one of those that is not
close. So we’d better look
everywhere!

7

Another Problem: Entity
Resolution

�Two sets of 1 million name-address-
phone records.

�Some pairs, one from each set,
represent the same person.

�Errors of many kinds:

� Typos, missing middle initial, area-code
changes, St./Street, Bob/Robert, etc., etc.

8

Entity Resolution – (2)

�Choose a scoring system for how close
names are.

� Deduct so much for edit distance > 0; so
much for missing middle initial, etc.

�Similarly score differences in addresses,
phone numbers.

�Sufficiently high total score -> records
represent the same entity.

9

Simple Solution

�Compare each pair of records, one from
each set.

�Score the pair.

�Call them the same if the score is
sufficiently high.

�Unfeasible for 1 million records.

�We can do better!

10

Example: Similar Customers

�Common pattern: looking for sets with a
relatively large intersection.

�Represent a customer, e.g., of Netflix,
by the set of movies they rented.

�Similar customers have a relatively large
fraction of their choices in common.

11

Example: Similar Products

�Dual view of product-customer relationship.

�Products are similar if they are bought by
many of the same customers.

�E.g., movies of the same genre are typically
rented by similar sets of Netflix customers.

� Tricky: Sony and Samsung TV’s are “similar,”
but not typically bought by the same customers.

12

Yet Another Problem: Finding
Similar Documents

�Given a body of documents, e.g., the
Web, find pairs of docs that have a lot
of text in common, e.g.:

� Mirror sites, or approximate mirrors.

� Plagiarism, including large quotations.

� Repetitions of news articles at news sites.

13

Complexity of Document
Similarity

�For the face problem, there is a way to
represent a big image by a (relatively)
small data-set.

�Entity records represent themselves.

�How do you represent a document so it
is easy to compare with others?

14

Complexity – (2)

�Special cases are easy, e.g., identical
documents, or one document contained
verbatim in another.

�General case, where many small pieces
of one doc appear out of order in
another, is very hard.

15

Roadmap

Sets or
Boolean
matrices

Similar
customers

Similar
products

Signatures

Buckets
containing

mostly
similar
items

Technique:
Minhashing

Face-
recognition Entity-

resolution

Documents

Technique:
Shingling

Technique:
Locality-Sensitive
Hashing

16

Representing Documents for
Similarity Search

1. Represent doc by its set of shingles
(or k -grams).

2. Summarize shingle set by a signature
= small data-set with the property:

� Similar documents are very likely to have
“similar” signatures.

� At that point, doc problem becomes
finding similar sets.

17

Shingles

�A k-shingle (or k-gram) for a document
is a sequence of k characters that
appears in the document.

�Example: k=2; doc = abcab. Set of 2-
shingles = {ab, bc, ca}.

� Option: regard shingles as a bag, and
count ab twice.

18

Shingles: Compression Option

�To compress long shingles, we can hash
them to (say) 4 bytes.

�Represent a doc by the set of hash
values of its k-shingles.

�Two documents could (rarely) appear to
have shingles in common, when in fact
only the hash-values were shared.

19

MinHashing

Data as Sparse Matrices

Jaccard Similarity Measure

Constructing Signatures

20

Basic Data Model: Sets

� Many similarity problems can be
couched as finding subsets of some
universal set that have large
intersection.

� Examples include:

1. Documents represented by their set of
shingles (or hashes of those shingles).

2. Similar customers or products.

21

From Sets to Boolean Matrices

�Rows = elements of the universal set.

�Columns = sets.

�1 in the row for element e and the
column for set S iff e is a member of S.

22

In Matrix Form

S T U V W

a 1 1 0 1 0

b 1 0 1 1 0

c 1 0 0 1 0

d 0 1 0 0 1

e 1 0 1 0 1

f 1 1 0 1 1

g 0 1 0 1 1

h 0 1 0 1 0

S = {a,b,c,e,f} T = {a,d,f,g,h} U = {b,e}
V = {a,b,c,f,g,h} W = {d,e,f,g}

23

Documents in Matrix Form

�Rows = shingles (or hashes of
shingles).

�Columns = documents.

�1 in row r, column c iff document c
has shingle r.

�Expect the matrix to be sparse.

24

Aside

�We might not really represent the data
by a boolean matrix.

�Sparse matrices are usually better
represented by the list of places where
there is a non-zero value.
� E.g., movies rented by a customer,

shingle-sets.

�But the matrix picture is conceptually
useful.

25

Assumptions

1. Number of items allows a small
amount of main-memory/item.

� E.g., main memory =

Number of items * 1000

2. Too many items to store anything in
main-memory for each pair of items.

26

Similarity of Columns

�Remember: a column is the set of rows in
which it has 1.

�The similarity of columns C1 and C2 =
Sim (C1,C2) = is the ratio of the sizes of
the intersection and union of C1 and C2.
� Sim (C1,C2) = |C1∩C2|/|C1∪C2| = Jaccard

similarity.

27

Example: Jaccard Similarity

C1 C2

0 1

1 0

1 1 Sim (C1, C2) =

0 0 2/5 = 0.4

1 1

0 1

*

*

*

*

*

*

*

28

Outline: Finding Similar Columns

1. Compute signatures of columns = small
summaries of columns.
� Read from disk to main memory.

2. Examine signatures in main memory to
find similar signatures.
� Essential: similarities of signatures and

columns are related.

3. Optional: check that columns with
similar signatures are really similar.

29

Warnings

1. Comparing all pairs of signatures may
take too much time, even if not too
much space.

� A job for Locality-Sensitive Hashing.

2. These methods can produce false
negatives, and even false positives if
the optional check is not made.

30

Signatures

� Key idea: “hash” each column C to a
small signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a
signature in main memory for each
column.

2. Sim (C1, C2) is the same as the
“similarity” of Sig (C1) and Sig (C2).

31

An Idea That Doesn’t Work

�Pick 100 rows at random, and let the
signature of column C be the 100 bits
of C in those rows.

�Because the matrix is sparse, many
columns would have 00. . .0 as a
signature, yet be very dissimilar
because their 1’s are in different rows.

32

Four Types of Rows

�Given columns C1 and C2, rows may be
classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

�Also, a = # rows of type a , etc.

�Note Sim (C1, C2) = a /(a +b +c).

33

Minhashing

�Imagine the rows permuted randomly.

�Define “hash” function h (C) = the
number of the first (in the permuted
order) row in which column C has 1.

�Use several (100?) independent hash
functions to create a signature.

34

Minhashing Example

Input matrix

0101

0101

1010

1010

1010

1001

0101

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

35

Surprising Property

�The probability (over all permutations
of the rows) that h (C1) = h (C2) is the
same as Sim (C1, C2).

�Both are a /(a +b +c)!

�Why?
� Look down columns C1 and C2 until we

see a 1.

� If it’s a type-a row, then h (C1) = h (C2).
If a type-b or type-c row, then not.

36

Similarity for Signatures

�The similarity of signatures is the
fraction of the rows in which they
agree.

� Remember, each row corresponds to a
permutation or “hash function.”

37

Min Hashing – Example

Input matrix

0101

0101

1010

1010

1010

1001

0101

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

38

Minhash Signatures

�Pick (say) 100 random permutations of
the rows.

�Think of Sig (C) as a column vector.

�Let Sig (C)[i] = according to the i th
permutation, the number of the first
row that has a 1 in column C.

39

Implementation – (1)

�Suppose 1 billion rows.

�Hard to pick a random permutation
from 1…billion.

�Representing a random permutation
requires 1 billion entries.

�Accessing rows in permuted order leads
to thrashing.

40

Implementation – (2)

� A good approximation to permuting
rows: pick (say) 100 hash functions.

� For each column c and each hash
function hi , keep a “slot” M (i, c) for
that minhash value.

41

Implementation – (3)

for each row r

for each column c

if c has 1 in row r

for each hash function hi do

if hi (r) is a smaller value than
M (i, c) then

M (i, c) := hi (r);

42

Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1 1 -
g(1) = 3 3 -

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2

43

Implementation – (4)

�If data is stored row-by-row, then only
one pass is needed.

�If data is stored column-by-column

� E.g., data is a sequence of documents

represent it by (row-column) pairs and
sort once by row.

� Saves cost of computing h (r) many times.

