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Applications
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Example Application: Face 
Recognition

�We have a database of (say) 1 million 
face images.

�We want to find the most similar 
images in the database.

�Represent faces by (relatively) invariant 
values, e.g., ratio of nose width to eye 
width.
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Face Recognition – (2)

�Each image represented by a large 
number (say 1000) of numerical 
features.

�Problem: given a face, find those in the 
DB that are close in at least ¾ (say) of 
the features.
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Face Recognition – (3)

�Many-one problem : given a new face, 
see if it is close to any of the 1 million 
old faces.

�Many-Many problem : which pairs of 
the 1 million faces are similar.
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Simple Solution

�Represent each face by a vector of 
1000 values and score the comparisons.

�Sort-of OK for many-one problem.

�Out of the question for the many-many 
problem (106*106*1000/2 numerical 
comparisons).

�We can do better!
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Multidimensional Indexes 
Don’t Work

New face:
[6,14,…]

0-4

5-9

10-14
. . .

Dimension 1 =

Surely we’d
better look
here.

Maybe look
here too, in
case of a
slight error.

But the first dimension could
be one of those that is not
close.  So we’d better look
everywhere!
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Another Problem: Entity 
Resolution

�Two sets of 1 million name-address-
phone records.

�Some pairs, one from each set, 
represent the same person.

�Errors of many kinds:

� Typos, missing middle initial, area-code 
changes, St./Street, Bob/Robert, etc., etc.
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Entity Resolution – (2)

�Choose a scoring system for how close 
names are.

� Deduct so much for edit distance > 0; so 
much for missing middle initial, etc.

�Similarly score differences in addresses, 
phone numbers.

�Sufficiently high total score -> records 
represent the same entity.
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Simple Solution

�Compare each pair of records, one from 
each set.

�Score the pair.

�Call them the same if the score is 
sufficiently high.

�Unfeasible for 1 million records.

�We can do better!
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Example: Similar Customers

�Common pattern: looking for sets with a 
relatively large intersection.

�Represent a customer, e.g., of Netflix, 
by the set of movies they rented.

�Similar customers have a relatively large 
fraction of their choices in common.
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Example: Similar Products

�Dual view of product-customer relationship.

�Products are similar if they are bought by 
many of the same customers.

�E.g., movies of the same genre are typically 
rented by similar sets of Netflix customers.

� Tricky: Sony and Samsung TV’s are “similar,” 
but not typically bought by the same customers.



12

Yet Another Problem: Finding 
Similar Documents

�Given a body of documents, e.g., the 
Web, find pairs of docs that have a lot 
of text in common, e.g.:

� Mirror sites, or approximate mirrors.

� Plagiarism, including large quotations.

� Repetitions of news articles at news sites.
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Complexity of Document 
Similarity

�For the face problem, there is a way to 
represent a big image by a (relatively) 
small data-set.

�Entity records represent themselves.

�How do you represent a document so it 
is easy to compare with others?
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Complexity – (2)

�Special cases are easy, e.g., identical 
documents, or one document contained 
verbatim in another.

�General case, where many small pieces 
of one doc appear out of order in 
another, is very hard.
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Roadmap

Sets or
Boolean
matrices

Similar
customers

Similar
products

Signatures

Buckets
containing

mostly
similar
items

Technique:
Minhashing

Face-
recognition Entity-

resolution

Documents

Technique:
Shingling

Technique:
Locality-Sensitive
Hashing
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Representing Documents for 
Similarity Search

1. Represent doc by its set of shingles
(or k -grams).

2. Summarize shingle set by a signature
= small data-set with the property: 

� Similar documents are very likely to have 
“similar” signatures.

� At that point, doc problem becomes 
finding similar sets.
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Shingles

�A k-shingle (or k-gram) for a document 
is a sequence of k characters that 
appears in the document.

�Example: k=2; doc = abcab.  Set of 2-
shingles = {ab, bc, ca}.

� Option: regard shingles as a bag, and 
count ab twice.
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Shingles: Compression Option

�To compress long shingles, we can hash 
them to (say) 4 bytes.

�Represent a doc by the set of hash 
values of its k-shingles.

�Two documents could (rarely) appear to 
have shingles in common, when in fact 
only the hash-values were shared.
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MinHashing

Data as Sparse Matrices

Jaccard Similarity Measure

Constructing Signatures
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Basic Data Model: Sets

� Many similarity problems can be 
couched as finding subsets of some 
universal set that have large 
intersection.

� Examples include:

1. Documents represented by their set of 
shingles (or hashes of those shingles).

2. Similar customers or products.
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From Sets to Boolean Matrices

�Rows = elements of the universal set.

�Columns = sets.

�1 in the row for element e and the 
column for set S iff e is a member of S.
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In Matrix Form

S T U V W

a 1 1 0 1 0

b 1 0 1 1 0

c 1 0 0 1 0

d 0 1 0 0 1

e 1 0 1 0 1

f 1 1 0 1 1

g 0 1 0 1 1

h 0 1 0 1 0

S = {a,b,c,e,f}    T = {a,d,f,g,h}   U = {b,e}
V = {a,b,c,f,g,h}   W = {d,e,f,g}
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Documents in Matrix Form

�Rows = shingles (or hashes of 
shingles).

�Columns = documents.

�1 in row r, column c iff document c
has shingle r.

�Expect the matrix to be sparse.
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Aside

�We might not really represent the data 
by a boolean matrix.

�Sparse matrices are usually better 
represented by the list of places where 
there is a non-zero value.
� E.g., movies rented by a customer, 

shingle-sets.

�But the matrix picture is conceptually 
useful.
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Assumptions

1. Number of items allows a small 
amount of main-memory/item. 

� E.g., main memory = 

Number of items * 1000

2. Too many items to store anything in 
main-memory for each pair of items.
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Similarity of Columns

�Remember: a column is the set of rows in 
which it has 1.

�The similarity of columns C1 and C2 = 
Sim (C1,C2) = is the ratio of the sizes of 
the intersection and union of C1 and C2.
� Sim (C1,C2) = |C1∩C2|/|C1∪C2| = Jaccard

similarity.
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Example: Jaccard Similarity

C1 C2

0 1

1 0

1 1 Sim (C1, C2) =

0 0 2/5 = 0.4

1 1

0 1

*

*

*

*

*

*

*
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Outline: Finding Similar Columns

1. Compute signatures of columns = small 
summaries of columns.
� Read from disk to main memory.

2. Examine signatures in main memory to 
find similar signatures.
� Essential: similarities of signatures and 

columns are related.

3. Optional: check that columns with 
similar signatures are really similar.
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Warnings

1. Comparing all pairs of signatures may 
take too much time, even if not too 
much space.

� A job for Locality-Sensitive Hashing.

2. These methods can produce false 
negatives, and even false positives if 
the optional check is not made.



30

Signatures

� Key idea: “hash” each column C to a 
small signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a 
signature in main memory for each 
column.

2. Sim (C1, C2) is the same as the 
“similarity” of Sig (C1) and Sig (C2).
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An Idea That Doesn’t Work

�Pick 100 rows at random, and let the 
signature of column C be the 100 bits 
of C in those rows.

�Because the matrix is sparse, many 
columns would have 00. . .0 as a 
signature, yet be very dissimilar 
because their 1’s are in different rows.
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Four Types of Rows

�Given columns C1 and C2, rows may be 
classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

�Also, a = # rows of type a , etc.

�Note Sim (C1, C2) = a /(a +b +c ).
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Minhashing

�Imagine the rows permuted randomly.

�Define “hash” function h (C ) = the 
number of the first (in the permuted 
order) row in which column C has 1.

�Use several (100?) independent hash 
functions to create a signature.
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Minhashing Example

Input matrix 

0101

0101

1010

1010

1010

1001

0101 

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121
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Surprising Property

�The probability (over all permutations 
of the rows) that h (C1) = h (C2) is the 
same as Sim (C1, C2).

�Both are a /(a +b +c )!

�Why?
� Look down columns C1 and C2 until we 

see a 1.

� If it’s a type-a row, then h (C1) = h (C2).  
If a type-b or type-c row, then not.
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Similarity for Signatures

�The similarity of signatures is the 
fraction of the rows in which they 
agree.

� Remember, each row corresponds to a 
permutation or “hash function.”
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Min Hashing – Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 

5

2

1

6

7

4

3

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0
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Minhash Signatures

�Pick (say) 100 random permutations of 
the rows.

�Think of Sig (C) as a column vector.

�Let Sig (C)[i] = according to the i th
permutation, the number of the first 
row that has a 1 in column C.
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Implementation – (1)

�Suppose 1 billion rows.

�Hard to pick a random permutation 
from 1…billion.

�Representing a random permutation 
requires 1 billion entries.

�Accessing rows in permuted order leads 
to thrashing.
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Implementation – (2)

� A good approximation to permuting 
rows: pick (say) 100 hash functions.

� For each column c and each hash 
function hi , keep a “slot” M (i, c ) for 
that minhash value.
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Implementation – (3)

for each row r

for each column c 

if c has 1 in row r

for each hash function hi do

if hi (r ) is a smaller value than 
M (i, c ) then

M (i, c ) := hi (r );
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Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1 1 -
g(1) = 3 3 -

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2
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Implementation – (4)

�If data is stored row-by-row, then only 
one pass is needed.

�If data is stored column-by-column

� E.g., data is a sequence of documents

represent it by (row-column) pairs and 
sort once by row.

� Saves cost of computing h (r ) many times.


