Near-Neighbor Search

Applications
Matrix Formulation
Minhashing

. Face
Recognition

€ \We have a database of (say) 1 million
face images.

& We want to find the most similar
images in the database.

@ Represent faces by (relatively) invariant
values, e.q., ratio of nose width to eye
width.

Face Recognition — (2)

Each image represented by a large
number (say 1000) of numerical
features.

@ Problem: given a face, find those in the
DB that are close in at least 34 (say) of
the features.

Face Recognition — (3)

&® Many-one problem : given a new face,
see if it is close to any of the 1 million
old faces.

® Many-Many problem : which pairs of
the 1 million faces are similar.

Simple Solution

@ Represent each face by a vector of
1000 values and score the comparisons.

@ Sort-of OK for many-one problem.

€ Out of the question for the many-many
problem (10°*10°*1000/2 numerical
comparisons).

€ \We can do better!

Multidimensional Indexes
Don't Work

New face:
[6,14,...]

Djmension 1% =

g
s N

Ir\:lear»ébteol)ooilr(\ Eetter look But the first dimension could
A é ere. be one of those that is not
slight error. close. So we'd better look

everywhere!

. Entity
Resolution

& Two sets of 1 million name-address-
phone records.

€ Some pairs, one from each set,
represent the same person.

¢

+ Typos, missing middle initial, area-code
changes, St./Street, Bob/Robert, etc., etc.

Entity Resolution — (2)

€ Choose a scoring system for how close
names are.

* Deduct so much for edit distance > 0; so
much for missing middle initial, etc.

€ Similarly score differences in addresses,
phone numbers.

@ Sufficiently high total score -> records
represent the same entity.

Simple Solution

€ Compare each pair of records, one from
each set.

® Score the pair.

& Call them the same if the score is
sufficiently high.

® Unfeasible for 1 million records.
€ \We can do better!

: Similar Customers

€ Common pattern: looking for sets with a
relatively large intersection.

® Represent a customer, e.qg., of Netflix,
by the set of movies they rented.

€ Similar customers have a relatively large
fraction of their choices in common.

10

: Similar Products

@ Dual view of product-customer relationship.

@ Products are similar if they are bought by
many of the same customers.

®E.g., movies of the same genre are typically
rented by similar sets of Netflix customers.

* Tricky: Sony and Samsung TV's are “similar,”
but not typically bought by the same customers.

11

: Finding
Similar Documents

€ Given a body of documents, e.g., the
Web, find pairs of docs that have a lot
of text in common, e.g.:
+ Mirror sites, or approximate mirrors.
+ Plagiarism, including large quotations.
+ Repetitions of news articles at news sites.

12

Complexity of Document
Similarity

® For the face problem, there is a way to
represent a big image by a (relatively)
small data-set.

@ Entity records represent themselves.

4
?

13

Complexity — (2)

@ Special cases are easy, e.qg., identical
documents, or one document contained
verbatim in another.

® General case, where many small pieces
of one doc appear out of order in
another, is very hard.

14

Similar
customers \

Similar ——"|

products

Sets or
Boolean
matrices

Roadmap

Technique:
Minhashing

Technique:

Shingling

Documents

>

Signatures
Technique:
Locality-Sensitiv
Hashing
Face-

recognition Entity-
resolution

Buckets
containing
mostly
similar
items

15

Representing Documents for
Similarity Search

1. Represent doc by its set of sfingles
(or kK -grams).
2. Summarize shingle set by a signature
= small data-set with the property:
+ Similar documents are very likely to have
“similar” signatures.

€ At that point, doc problem becomes
finding similar sets.

16

Shingles

@ A k-shingle (or k~~gram) for a document
IS @ sequence of k& characters that
appears in the document.

¢ : k=2; doc = abcab. Set of 2-
shingles = {ab, bc, ca}.
¢ : regard shingles as a bag, and

count ab twice.

17

Shingles:

€ To compress long shingles, we can hash
them to (say) 4 bytes.

® Represent a doc by the set of hash
values of its A-shingles.

€ Two documents could (rarely) appear to
have shingles in common, when in fact
only the hash-values were shared.

18

MinHashing

Data as Sparse Matrices
Jaccard Similarity Measure
Constructing Signatures

19

Basic Data Model: Sets

€ Many similarity problems can be
couched as finding subsets of some
universal set that have large
intersection.

¢ include:

1. Documents represented by their set of
shingles (or hashes of those shingles).

2. Similar customers or products.

20

From Sets to Boolean Matrices

= elements of the universal set.
¢ = sets.

€1 in the row for element e and the
column for set S iff e is a member of S.

21

In Matrix Form

V
1
1
1
0
0
1
1

O O H,H O FH WU
= = = O = O O |-
OO O O~ O O = O|C
Ol—tl—tl—tl—tOOOE

o0 0o o 6O T

1

S={abcef} T={adfgh} U={be}
V ={ab,cf,gh} W={defqg}

22

Documents In Matrix Form

¢ = shingles (or hashes of
shingles).
¢ = documents.

€1 in row r, column c iff document ¢
has shingle r.

@ Expect the matrix to be sparse.

23

€ We might not really represent the data
by a boolean matrix.

® Sparse matrices are usually better
represented by the list of places where
there is a non-zero value.

+ E.g., movies rented by a customer,
shingle-sets.

€ But the matrix picture is conceptually
useful.

24

Assumptions

1. Number of items allows a small
amount of main-memory/item.

€ E.g., main memory =
Number of items * 1000

2. Too many items to store anything in
main-memory for each of items.

25

Similarity of Columns

¢ : a column is the set of rows in
which it has 1.

&® The similarity of columns C; and C, =
S5im (C,,C,) = is the ratio of the sizes of
the intersection and union of C; and C,.

* Sim (C,,C,) = |C,nG,|/|C,UC,| = Jaccard
similarity.

26

O~ O~ = O

|—L|—~O|—LO|—~‘(‘)

IND

*

*

*
*

*
*

*

. Jaccard Similarity

Sim (C;, &) =
2/5 = 0.4

27

Outline: Finding Similar Columns

1. Compute signatures of columns = small
summaries of columns.

+ Read from disk to main memory.

2. Examine signatures in main memory to
find similar signatures.

. : similarities of signatures and
columns are related.

3. : check that columns with
similar signatures are really similar.

28

Warnings

1. Comparing all pairs of signatures may
take too much time, even if not too
much space.

+ A job for Locality-Sensitive Hashing.
2. These methods can produce false

negatives, and even false positives if
the optional check is not made.

29

¢

Signatures

: “hash” each column C to a
small signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a
signature in main memory for each
column.

2. Sim (C,, C,) is the same as the
“similarity” of Sig (C,) and Sig (C,).

30

An Idea That Doesn't Work

@ Pick 100 rows at random, and let the
signature of column C be the 100 bits
of C in those rows.

Because the matrix is sparse, many
columns would have 00. . .0 as a
signature, yet be very dissimilar
because their 1's are in different rows.

31

Four Types of Rows

@ Given columns C, and C,, rows may be
classified as:

@)

1. 2

O O = |0
= O =

d
b
C
d 0

®Also, a = # rows of type a, etc.

®Note Sim(C,, C,) = a/(a+b+c).

32

Minhashing

€ Imagine the rows permuted randomly.

@ Define “hash” function A (C) = the
number of the first (in the permuted
order) row in which column C has 1.

@ Use several (100?) independent hash
functions to create a signature.

33

Minhashing Example

Input matrix Signature matrix M
1{{4]{3] |1 |0 (1 |0 > 11 |2 |1
3((21(4] |11 |0 |0 |1 m
7| |z o |r o 1 MENENEN
6/36/ [0 [1 0 [t |C)
2116111 10 |1 |0 |1
51712 [1 |0 (1 |O
4((5]I5 [1 |0 |1 |O "

Surprising Property

The probability (over all permutations
of the rows) that /7 (C,) = /7 (C,) is the
same as Sim (C,, C,).

®Bothare a/(a+b +c)!

¢ ?

+ Look down columns C; and G, until we
see a 1.

+ If it's a type-a row, then A (C,) = /1 (C,).
If a type-b or type-c row, then not.

35

Similarity for Signhatures

& The similarity of signatures is the
fraction of the rows in which they
agree.

* Remember, each row corresponds to a
permutation or “hash function.”

36

Min Hashing — Example

Input matrix Signature matrix M
1{{4(i3| (1 (0 |1 |0 2 11 |2 |1
3((214] (1 |0 |0 |1 m
7117l [0 |1 (O |1 rEENEEEN
6/36/ [0 [1 0 [t |C)

21(6](1] |10 |1 |0 |1 Similarities:
>1[71(2] 11 |90 |1 |0 | colcol 3.35 5.745 1o2 35}
4115151 11 1o 11 |0 Sig/Sig|0.67 1.00 O37 0

Minhash Signatures

@ Pick (say) 100 random permutations of
the rows.

@ Think of Sig (C) as a column vector.

® Let Sig (C)[i] = according to the /7th
permutation, the number of the first
row that has a 1 in column C

38

Implementation — (1)

@ Suppose 1 billion rows.

® Hard to pick a random permutation
from 1...billion.

® Representing a random permutation
requires 1 billion entries.

@ Accessing rows in permuted order leads
to thrashing.

39

Implementation — (2)

¢
. pick (say) 100 hash functions.

® For each column ¢ and each hash
function #A;, keep a “slot” M(/, c) for
that minhash value.

40

Implementation — (3)

for each row r
for each column ¢
ifchas1inrow r

for each hash function A, do

iIf /,(r) is a smaller value than
M(/ c) then

M, c):= h(r),

41

O P~ WNNEFHO

7
a

O L OK
O, EFMEO

X) = xmod 5
X) = 2x+1 mod 5

A1
a1
A2
a2

A3
a3

4
g4

A5
a5

11l 11 1 | | I |
O h~r P~ NW oON W

W= W=

N — N — N =

OO ON ON ON

42

Implementation — (4)

@ If data is stored row-by-row, then only
one pass is needed.

¢ If data is stored column-by-column
+ E.g., data is a sequence of documents

represent it by (row-column) pairs and
sort once by row.

+ Saves cost of computing A (r) many times.

43

