CS345 Data Mining

Link Analysis 2: Topic-Specific Page Rank Hubs and Authorities Spam Detection

Anand Rajaraman, Jeffrey D. Ullman

Some problems with page rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Ambiguous queries e.g., jaguar
- Uses a single measure of importance
 - Other models e.g., hubs-and-authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank

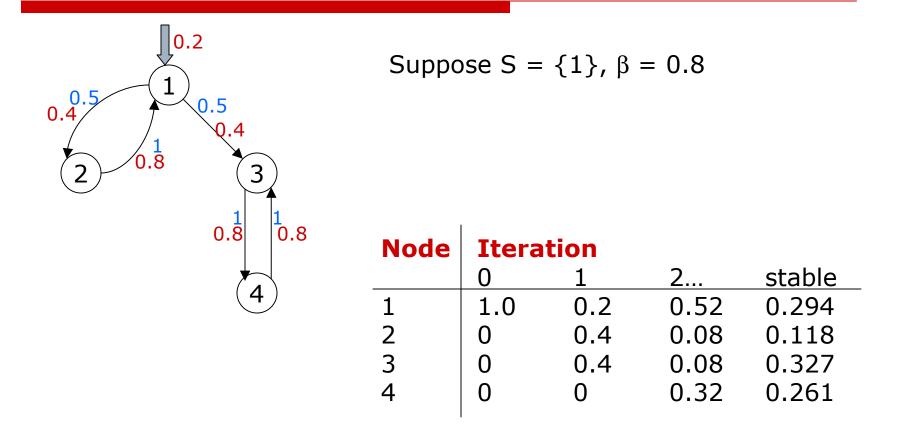
Topic-Specific Page Rank

- Instead of generic popularity, can we measure popularity within a topic?
 - E.g., computer science, health
- Bias the random walk
 - When the random walker teleports, he picks a page from a set S of web pages
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic (www.dmoz.org)
- For each teleport set S, we get a different rank vector r_s

Matrix formulation

- $\Box A_{ij} = \beta M_{ij} + (1-\beta)/|S| \text{ if } i \ge S$
- $\Box A_{ij} = \beta M_{ij}$ otherwise
- □ Show that **A** is stochastic
- We have weighted all pages in the teleport set S equally
 - Could also assign different weights to them

Example



Note how we initialize the page rank vector differently from the unbiased page rank case.

How well does TSPR work?

- Experimental results [Haveliwala 2000]
- Picked 16 topics
 - Teleport sets determined using DMOZ
 - E.g., arts, business, sports,...
- "Blind study" using volunteers
 - 35 test queries
 - Results ranked using Page Rank and TSPR of most closely related topic
 - E.g., bicycling using Sports ranking
 - In most cases volunteers preferred TSPR ranking

Which topic ranking to use?

- User can pick from a menu
- Use Bayesian classification schemes to classify query into a topic
- □ Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., "basketball" followed by "jordan"
- User context e.g., user's My Yahoo settings, bookmarks, ...

Hubs and Authorities

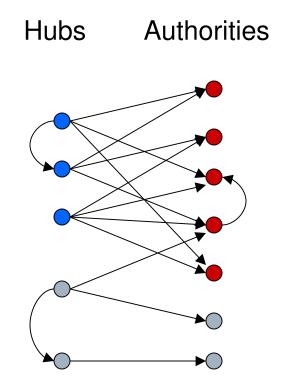
- Suppose we are given a collection of documents on some broad topic
 - e.g., stanford, evolution, iraq
 - perhaps obtained through a text search
- Can we organize these documents in some manner?
 - Page rank offers one solution
 - HITS (Hypertext-Induced Topic Selection) is another

□ proposed at approx the same time (1998)

HITS Model

- Interesting documents fall into two classes
- Authorities are pages containing useful information
 - course home pages
 - home pages of auto manufacturers
- Hubs are pages that link to authorities
 - course bulletin
 - list of US auto manufacturers

Idealized view



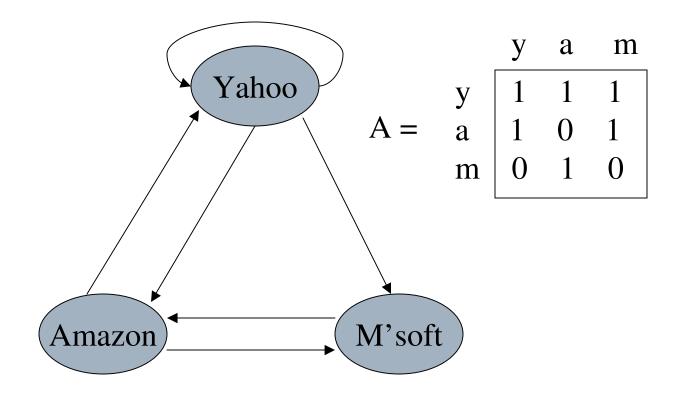
Mutually recursive definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node
 - Hub score and Authority score
 - Represented as vectors h and a

Transition Matrix A

- □ HITS uses a matrix A[i, j] = 1 if page *i* links to page *j*, 0 if not
- \Box A^{T} , the transpose of A, is similar to the PageRank matrix M, but A^{T} has 1's where M has fractions

Example



Hub and Authority Equations

The hub score of page P is proportional to the sum of the authority scores of the pages it links to

h = λAa

- Constant λ is a scale factor
- The authority score of page P is proportional to the sum of the hub scores of the pages it is linked from

a = $\mu A^T \mathbf{h}$

Constant µ is scale factor

Iterative algorithm

- □ Initialize **h**, **a** to all 1's
- □ h = Aa
- □ Scale **h** so that its max entry is 1.0
- \Box a = A^Th
- □ Scale **a** so that its max entry is 1.0
- Continue until h, a converge

Example

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$a(yahoo) =$$
1111...1 $a(amazon) =$ 11 $4/5$ 0.75 ... 0.732 $a(m'soft) =$ 1111...1 $h(yahoo) =$ 1111...1.000 $h(amazon) =$ 12/3 0.71 0.73 ... 0.732 $h(m'soft) =$ 11/3 0.29 0.27 ... 0.268

Existence and Uniqueness

- $\mathbf{h} = \lambda A \mathbf{a}$
- $\mathbf{a} = \boldsymbol{\mu} \boldsymbol{A}^T \mathbf{h}$
- $\mathbf{h} = \lambda \boldsymbol{\mu} \mathcal{A} \mathcal{A}^{T} \mathbf{h}$
- $\mathbf{a} = \lambda \mu A^T A \mathbf{a}$

Under reasonable assumptions about **A**, the dual iterative algorithm converges to vectors **h*** and **a*** such that:

- **h*** is the principal eigenvector of the matrix AA^{T}
- a^* is the principal eigenvector of the matrix $A^T A$

Bipartite cores



Most densely-connected core (primary core)

Less densely-connected core (secondary core)

Secondary cores

- A single topic can have many bipartite cores
 - corresponding to different meanings, or points of view
 - abortion: pro-choice, pro-life
 - evolution: darwinian, intelligent design
 - jaguar: auto, Mac, NFL team, *panthera onca*
- □ How to find such secondary cores?

Non-primary eigenvectors

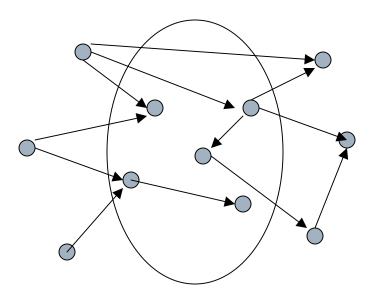
- □ AA^T and A^TA have the same set of eigenvalues
 - An eigenpair is the pair of eigenvectors with the same eigenvalue
 - The primary eigenpair (largest eigenvalue) is what we get from the iterative algorithm
- Non-primary eigenpairs correspond to other bipartite cores
 - The eigenvalue is a measure of the density of links in the core

Finding secondary cores

- Once we find the primary core, we can remove its links from the graph
- Repeat HITS algorithm on residual graph to find the next bipartite core
- Technically, not exactly equivalent to non-primary eigenpair model

Creating the graph for HITS

We need a well-connected graph of pages for HITS to work well



Page Rank and HITS

- Page Rank and HITS are two solutions to the same problem
 - What is the value of an inlink from S to D?
 - In the page rank model, the value of the link depends on the links into S
 - In the HITS model, it depends on the value of the other links **out of** S
- The destinies of Page Rank and HITS post-1998 were very different
 - Why?

Web Spam

- Search has become the default gateway to the web
- Very high premium to appear on the first page of search results
 - e.g., e-commerce sites
 - advertising-driven sites

What is web spam?

- Spamming = any deliberate action solely in order to boost a web page's position in search engine results, incommensurate with page's real value
- Spam = web pages that are the result of spamming
- □ This is a very broad defintion
 - SEO industry might disagree!
 - SEO = search engine optimization
- Approximately 10-15% of web pages are spam

Web Spam Taxonomy

- We follow the treatment by Gyongyi and Garcia-Molina [2004]
- Boosting techniques
 - Techniques for achieving high relevance/importance for a web page
- Hiding techniques
 - Techniques to hide the use of boosting
 From humans and web crawlers

Boosting techniques

□ Term spamming

- Manipulating the text of web pages in order to appear relevant to queries
- □ Link spamming
 - Creating link structures that boost page rank or hubs and authorities scores

Term Spamming

□ Repetition

- of one or a few specific terms e.g., free, cheap, viagra
- Goal is to subvert TF.IDF ranking schemes

Dumping

- of a large number of unrelated terms
- e.g., copy entire dictionaries

□ Weaving

- Copy legitimate pages and insert spam terms at random positions
- Phrase Stitching
 - Glue together sentences and phrases from different sources

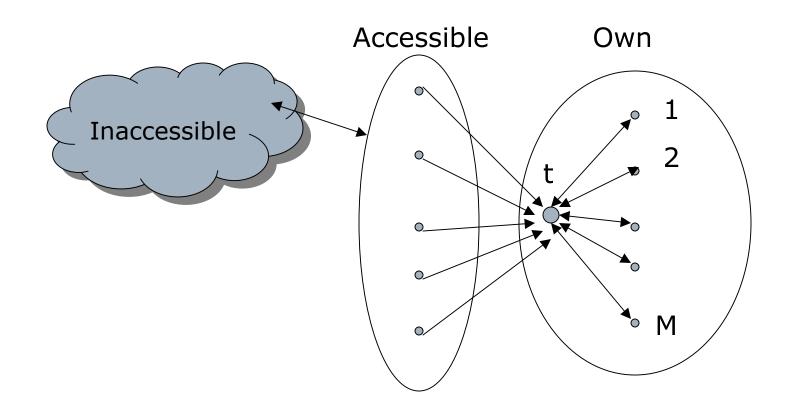
Link spam

- Three kinds of web pages from a spammer's point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., web log comments pages
 - spammer can post links to his pages
 - Own pages
 - Completely controlled by spammer
 - □ May span multiple domain names

Link Farms

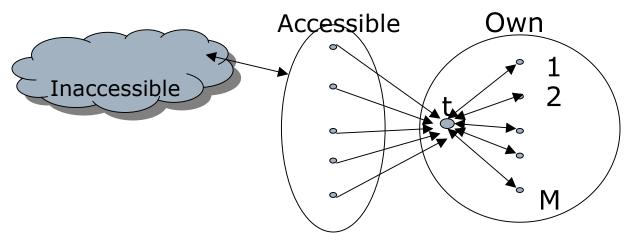
- Spammer's goal
 - Maximize the page rank of target page t
- Technique
 - Get as many links from accessible pages as possible to target page t
 - Construct "link farm" to get page rank multiplier effect

Link Farms



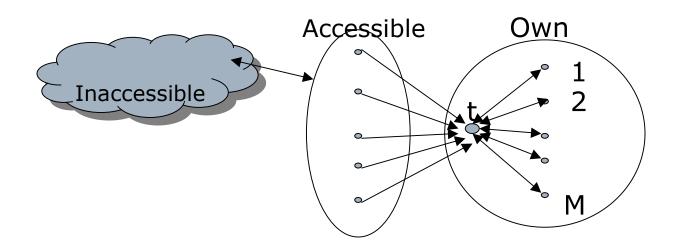
One of the most common and effective organizations for a link farm

Analysis



Suppose rank contributed by accessible pages = x Let page rank of target page = y Rank of each "farm" page = $\beta y/M + (1-\beta)/N$ $y = x + \beta M[\beta y/M + (1-\beta)/N] + (1-\beta)/N$ $= x + \beta^2 y + \beta (1-\beta)M/N + (1-\beta)/N$ Very small; ignore $y = x/(1-\beta^2) + cM/N$ where $c = \beta/(1+\beta)$

Analysis



- \Box y = x/(1- β^2) + cM/N where c = $\beta/(1+\beta)$
- **D** For $\beta = 0.85$, $1/(1-\beta^2) = 3.6$
 - Multiplier effect for "acquired" page rank
 - By making M large, we can make y as large as we want

Detecting Spam

Term spamming

- Analyze text using statistical methods e.g., Naïve Bayes classifiers
- Similar to email spam filtering
- Also useful: detecting approximate duplicate pages
- Link spamming
 - Open research area
 - One approach: TrustRank

TrustRank idea

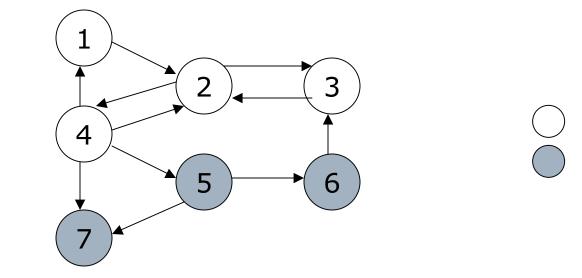
□ Basic principle: approximate isolation

- It is rare for a "good" page to point to a "bad" (spam) page
- Sample a set of "seed pages" from the web
- Have an oracle (human) identify the good pages and the spam pages in the seed set
 - Expensive task, so must make seed set as small as possible

Trust Propagation

- Call the subset of seed pages that are identified as "good" the "trusted pages"
- □ Set trust of each trusted page to 1
- Propagate trust through links
 - Each page gets a trust value between 0 and 1
 - Use a threshold value and mark all pages below the trust threshold as spam

Example



good

bad

Rules for trust propagation

Trust attenuation

- The degree of trust conferred by a trusted page decreases with distance
- □ Trust splitting
 - The larger the number of outlinks from a page, the less scrutiny the page author gives each outlink
 - Trust is "split" across outlinks

Simple model

- □ Suppose trust of page p is t(p)
 - Set of outlinks O(p)
- □ For each q2O(p), p confers the trust
 - $\beta t(p) / |O(p)|$ for $0 < \beta < 1$
- Trust is additive
 - Trust of p is the sum of the trust conferred on p by all its inlinked pages
- Note similarity to Topic-Specific Page Rank
 - Within a scaling factor, trust rank = biased page rank with trusted pages as teleport set

Picking the seed set

□ Two conflicting considerations

- Human has to inspect each seed page, so seed set must be as small as possible
- Must ensure every "good page" gets adequate trust rank, so need make all good pages reachable from seed set by short paths

Approaches to picking seed set

- Suppose we want to pick a seed set of k pages
- PageRank
 - Pick the top k pages by page rank
 - Assume high page rank pages are close to other highly ranked pages
 - We care more about high page rank "good" pages

Inverse page rank

- Pick the pages with the maximum number of outlinks
- Can make it recursive
 - Pick pages that link to pages with many outlinks
- □ Formalize as "inverse page rank"
 - Construct graph G' by reversing each edge in web graph G
 - Page Rank in G' is inverse page rank in G
- Pick top k pages by inverse page rank

Spam Mass

- □ In the TrustRank model, we start with good pages and propagate trust
- Complementary view: what fraction of a page's page rank comes from "spam" pages?
- In practice, we don't know all the spam pages, so we need to estimate

Spam mass estimation

Spam mass of $p = \frac{r(p)}{r(p)}$

Good pages

- For spam mass, we need a large set of "good" pages
 - Need not be as careful about quality of individual pages as with TrustRank
- One reasonable approach
 - .edu sites
 - .gov sites
 - .mil sites

Another approach

□ Backflow from known spam pages

- Course project from last year's edition of this course
- □ Still an open area of research...