
CS 345A
Data Mining

MapReduce



Single-node architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining



Commodity Clusters

� Web data sets can be very large 

� Tens to hundreds of terabytes

� Cannot mine on a single server (why?)

� Standard architecture emerging:

� Cluster of commodity Linux nodes

� Gigabit ethernet interconnect

� How to organize computations on this 
architecture?

� Mask issues such as hardware failure



Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between 
any pair of nodes
in a rack

2-10 Gbps backbone between racks



Stable storage

� First order problem: if nodes can fail, 
how can we store data persistently? 

� Answer: Distributed File System

� Provides global file namespace

� Google GFS; Hadoop HDFS; Kosmix KFS

� Typical usage pattern

� Huge files (100s of GB to TB)

� Data is rarely updated in place

� Reads and appends are common



Distributed File System

� Chunk Servers
� File is split into contiguous chunks

� Typically each chunk is 16-64MB

� Each chunk replicated (usually 2x or 3x)

� Try to keep replicas in different racks

� Master node
� a.k.a. Name Nodes in HDFS

� Stores metadata

� Might be replicated

� Client library for file access
� Talks to master to find chunk servers 

� Connects directly to chunkservers to access data



Warm up: Word Count

� We have a large file of words, one 
word to a line

� Count the number of times each 
distinct word appears in the file

� Sample application: analyze web 
server logs to find popular URLs



Word Count (2)

� Case 1: Entire file fits in memory

� Case 2: File too large for mem, but all 
<word, count> pairs fit in mem

� Case 3: File on disk, too many 
distinct words to fit in memory

� sort datafile | uniq –c



Word Count (3)

� To make it slightly harder, suppose 
we have a large corpus of documents

� Count the number of times each 
distinct word occurs in the corpus
� words(docs/*) | sort | uniq -c

� where words takes a file and outputs the 

words in it, one to a line

� The above captures the essence of 
MapReduce

� Great thing is it is naturally parallelizable



MapReduce: The Map Step

vk

k v

k v

map
vk

vk

…

k v

map

Input
key-value pairs

Intermediate
key-value pairs

…

k v



MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate
key-value pairs

group

reduce

reduce

k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output 
key-value pairs



MapReduce

� Input: a set of key/value pairs

� User supplies two functions:

� map(k,v) � list(k1,v1)

� reduce(k1, list(v1)) � v2

� (k1,v1) is an intermediate key/value 
pair

� Output is the set of (k1,v2) pairs



Word Count using MapReduce

map(key, value):

// key: document name; value: text of document

for each word w in value:

emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)



Distributed Execution Overview 

User
Program

Worker

Worker

Master

Worker

Worker

Worker

fork fork fork

assign
map

assign
reduce

read
local
write

remote
read,
sort

Output
File 0

Output
File 1

write

Split 0

Split 1

Split 2

Input Data



Data flow

� Input, final output are stored on a 
distributed file system

� Scheduler tries to schedule map tasks 
“close” to physical storage location of 
input data

� Intermediate results are stored on 
local FS of map and reduce workers

� Output is often input to another map 
reduce task



Coordination

� Master data structures

� Task status: (idle, in-progress, completed)

� Idle tasks get scheduled as workers 
become available

� When a map task completes, it sends the 
master the location and sizes of its R 
intermediate files, one for each reducer

� Master pushes this info to reducers

� Master pings workers periodically to 
detect failures



Failures

� Map worker failure

� Map tasks completed or in-progress at 
worker are reset to idle

� Reduce workers are notified when task is 
rescheduled on another worker

� Reduce worker failure

� Only in-progress tasks are reset to idle

� Master failure

� MapReduce task is aborted and client is 
notified



How many Map and Reduce jobs?

� M map tasks, R reduce tasks

� Rule of thumb:

� Make M and R much larger than the 
number of nodes in cluster

� One DFS chunk per map is common

� Improves dynamic load balancing and 
speeds recovery from worker failure

� Usually R is smaller than M, because 
output is spread across R files



Combiners

� Often a map task will produce many 
pairs of the form (k,v1), (k,v2), … for 
the same key k
� E.g., popular words in Word Count

� Can save network time by pre-
aggregating at mapper
� combine(k1, list(v1)) � v2

� Usually same as reduce function

� Works only if reduce function is 
commutative and associative



Partition Function

� Inputs to map tasks are created by 
contiguous splits of input file

� For reduce, we need to ensure that 
records with the same intermediate 
key end up at the same worker

� System uses a default partition 
function e.g., hash(key) mod R

� Sometimes useful to override 
� E.g., hash(hostname(URL)) mod R 

ensures URLs from a host end up in the 
same output file



Exercise 1: Host size

� Suppose we have a large web corpus

� Let’s look at the metadata file

� Lines of the form (URL, size, date, …)

� For each host, find the total number 
of bytes

� i.e., the sum of the page sizes for all 
URLs from that host



Exercise 2: Distributed Grep

� Find all occurrences of the given 
pattern in a very large set of files 



Exercise 3: Graph reversal

� Given a directed graph as an 
adjacency list:

src1: dest11, dest12, …

src2: dest21, dest22, …

� Construct the graph in which all the 
links are reversed



Exercise 4: Frequent Pairs

� Given a large set of market baskets, 
find all frequent pairs

� Remember definitions from Association 
Rules lectures



Implementations

� Google
� Not available outside Google

� Hadoop
� An open-source implementation in Java

� Uses HDFS for stable storage

� Download: http://lucene.apache.org/hadoop/

� Aster Data

� Cluster-optimized SQL Database that 
also implements MapReduce

� Made available free of charge for this 
class



Cloud Computing

� Ability to rent computing by the hour

� Additional services e.g., persistent 
storage

� We will be using Amazon’s “Elastic 
Compute Cloud” (EC2)

� Aster Data and Hadoop can both be 
run on EC2

� In discussions with Amazon to 
provide access free of charge for class



Special Section on MapReduce

� Tutorial on how to access Aster Data, 
EC2, etc

� Intro to the available datasets

� Friday, January 16, at 5:15pm

� Right after InfoSeminar

� Tentatively, in the same classroom 
(Gates B12) 



Reading

� Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing   

on Large Clusters

http://labs.google.com/papers/mapreduce.html

� Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung, The Google File System

http://labs.google.com/papers/gfs.html


