
CS345
Data Mining

Mining the Web for Structured Data

Our view of the web so far…

� Web pages as atomic units

� Great for some applications

� e.g., Conventional web search

� But not always the right model

Going beyond web pages

� Question answering

� What is the height of Mt Everest?

� Who killed Abraham Lincoln?

� Relation Extraction

� Find all <company,CEO> pairs

� Virtual Databases

� Answer database-like queries over web data

� E.g., Find all software engineering jobs in
Fortune 500 companies

Question Answering

� E.g., Who killed Abraham Lincoln?

� Naïve algorithm

� Find all web pages containing the terms
“killed” and “Abraham Lincoln” in close
proximity

� Extract n-grams from a small window
around the terms

� Find the most commonly occuring n-
grams

Question Answering

� Naïve algorithm works fairly well!

� Some improvements
� Use sentence structure e.g., restrict to

noun phrases only

� Rewrite questions before matching
� “What is the height of Mt Everest” becomes

“The height of Mt Everest is <blank>”

� The number of pages analyzed is
more important than the
sophistication of the NLP
� For simple questions

Reference: Dumais et al

Relation Extraction

� Find pairs (title, author)

� Where title is the name of a book

� E.g., (Foundation, Isaac Asimov)

� Find pairs (company, hq)

� E.g., (Microsoft, Redmond)

� Find pairs (abbreviation, expansion)

� (ADA, American Dental Association)

� Can also have tuples with >2
components

Relation Extraction

� Assumptions:

� No single source contains all the tuples

� Each tuple appears on many web pages

� Components of tuple appear “close”
together

� Foundation, by Isaac Asimov

� Isaac Asimov’s masterpiece, the
Foundation trilogy

� There are repeated patterns in the way
tuples are represented on web pages

Naïve approach

� Study a few websites and come up
with a set of patterns e.g., regular
expressions

letter = [A-Za-z.]

title = letter{5,40}

author = letter{10,30}

(title) by (author)

Problems with naïve approach

� A pattern that works on one web
page might produce nonsense when
applied to another

� So patterns need to be page-specific, or
at least site-specific

� Impossible for a human to
exhaustively enumerate patterns for
every relevant website

� Will result in low coverage

Better approach (Brin)

� Exploit duality between patterns and
tuples

� Find tuples that match a set of patterns

� Find patterns that match a lot of tuples

� DIPRE (Dual Iterative Pattern Relation
Extraction)

Patterns Tuples

Match

Generate

DIPRE Algorithm

1. R Ã SampleTuples
� e.g., a small set of <title,author> pairs

2. O Ã FindOccurrences(R)
� Occurrences of tuples on web pages

� Keep some surrounding context

3. P Ã GenPatterns(O)
� Look for patterns in the way tuples occur

� Make sure patterns are not too general!

4. R Ã MatchingTuples(P)

5. Return or go back to Step 2

Occurrences

� e.g., Titles and authors
� Restrict to cases where author and title appear

in close proximity on web page

 Foundation by Isaac Asimov (1951)
� url = http://www.scifi.org/bydecade/1950.html

� order = [title,author] (or [author,title])
� denote as 0 or 1

� prefix = “ ” (limit to e.g., 10 characters)
� middle = “ by ”
� suffix = “(1951) ”
� occurrence =
(’Foundation’,’Isaac Asimov’,url,order,prefix,middle,suffix)

Patterns

 Foundation by Isaac Asimov (1951)

<p> Nightfall by Isaac Asimov (1941)

� order = [title,author] (say 0)

� shared prefix =

� shared middle = by

� shared suffix = (19

� pattern = (order,shared prefix, shared middle,
shared suffix)

URL Prefix

� Patterns may be specific to a website

� Or even parts of it

� Add urlprefix component to pattern

http://www.scifi.org/bydecade/1950.html occurence:

 Foundation by Isaac Asimov (1951)

http://www.scifi.org/bydecade/1940.html occurence:

<p> Nightfall by Isaac Asimov (1941)

shared urlprefix = http://www.scifi.org/bydecade/19

pattern = (urlprefix,order,prefix,middle,suffix)

Generating Patterns

1. Group occurences by order and middle

2. Let O = set of occurences with the same
order and middle

� pattern.order = O.order

� pattern.middle = O.middle

� pattern.urlprefix = longest common prefix of all
urls in O

� pattern.prefix = longest common prefix of
occurrences in O

� pattern.suffix = longest common suffix of
occurrences in O

Example

http://www.scifi.org/bydecade/1950.html occurence:

 Foundation by Isaac Asimov (1951)

http://www.scifi.org/bydecade/1940.html occurence:

<p> Nightfall by Isaac Asimov (1941)

� order = [title,author]

� middle = “ by ”

� urlprefix = http://www.scifi.org/bydecade/19

� prefix = “ ”

� suffix = “ (19”

Example

http://www.scifi.org/bydecade/1950.html occurence:
Foundation, by Isaac Asimov, has been hailed…

http://www.scifi.org/bydecade/1940.html occurence:
Nightfall, by Isaac Asimov, tells the tale of…

� order = [title,author]

� middle = “, by ”

� urlprefix = http://www.scifi.org/bydecade/19

� prefix = “”

� suffix = “, ”

Pattern Specificity

� We want to avoid generating patterns
that are too general

� One approach:

� For pattern p, define specificity =
|urlprefix||middle||prefix||suffix|

� Suppose n(p) = number of occurences
that match the pattern p

� Discard patterns where n(p) < nmin

� Discard patterns p where
specificity(p)n(p) < threshold

Pattern Generation Algorithm

1. Group occurences by order and middle

2. Let O = a set of occurences with the same
order and middle

3. p = GeneratePattern(O)

4. If p meets specificity requirements, add p
to set of patterns

5. Otherwise, try to split O into multiple
subgroups by extending the urlprefix by
one character

� If all occurences in O are from the same URL,
we cannot extend the urlprefix, so we discard O

Extending the URL prefix

Suppose O contains occurences from urls of the form

http://www.scifi.org/bydecade/195?.html

http://www.scifi.org/bydecade/194?.html

urlprefix = http://www.scifi.org/bydecade/19

When we extend the urlprefix, we split O into two subsets:

urlprefix = http://www.scifi.org/bydecade/194

urlprefix = http://www.scifi.org/bydecade/195

Finding occurrences and matches

� Finding occurrences

� Use inverted index on web pages

� Examine resulting pages to extract
occurrences

� Finding matches

� Use urlprefix to restrict set of pages to
examine

� Scan each page using regex constructed
from pattern

Relation Drift

� Small contaminations can easily lead
to huge divergences

� Need to tightly control process

� Snowball (Agichtein and Gravano)

� Trust only tuples that match many
patterns

� Trust only patterns with high “support”
and “confidence”

Pattern support

� Similar to DIPRE

� Eliminate patterns not supported by
at least nmin known good tuples

� either seed tuples or tuples generated in
a prior iteration

Pattern Confidence

� Suppose tuple t matches pattern p

� What is the probability that tuple t is
valid?

� Call this probability the confidence of
pattern p, denoted conf(p)

� Assume independent of other patterns

� How can we estimate conf(p)?

Categorizing pattern matches

� Given pattern p, suppose we can
partition its matching tuples into groups
p.positive, p.negative, and p.unknown

� Grouping methodology is application-
specific

Categorizing Matches

� e.g., Organizations and Headquarters

� A tuple that exactly matches a known pair
(org,hq) is positive

� A tuple that matches the org of a known
tuple but a different hq is negative

� Assume org is key for relation

� A tuple that matches a hq that is not a
known city is negative

� Assume we have a list of valid city names

� All other occurrences are unknown

Categorizing Matches

� Books and authors
� One possibility…

� A tuple that matches a known tuple is
positive

� A tuple that matches the title of a known
tuple but has a different author is negative

� Assume title is key for relation

� All other tuples are unknown

� Can come up with other schemes if we
have more information

� e.g., list of possible legal people names

Example

� Suppose we know the tuples

� Foundation, Isaac Asimov

� Startide Rising, David Brin

� Suppose pattern p matches

� Foundation, Isaac Asimov

� Startide Rising, David Brin

� Foundation, Doubleday

� Rendezvous with Rama, Arthur C. Clarke

� |p.positive| = 2, |p.negative| = 1,
|p.unknown| = 1

Pattern Confidence (1)

pos(p) = |p.positive|

neg(p) = |p.negative|

un(p) = |p.unknown|

conf(p) = pos(p)/(pos(p)+neg(p))

Pattern Confidence (2)

� Another definition – penalize patterns
with many unknown matches

conf(p) = pos(p)/(pos(p)+neg(p)+un(p)α)

where 0 · α · 1

Tuple confidence

� Suppose candidate tuple t matches
patterns p1 and p2

� What is the probability that t is an
valid tuple?

� Assume matches of different patterns
are independent events

Tuple confidence

� Pr[t matches p1 and t is not valid] = 1-conf(p1)

� Pr[t matches p2 and t is not valid] = 1-conf(p2)

� Pr[t matches {p1,p2} and t is not valid] =
(1-conf(p1))(1-conf(p2))

� Pr[t matches {p1,p2} and t is valid] =
1 - (1-conf(p1))(1-conf(p2))

� If tuple t matches a set of patterns P
conf(t) = 1 - Πp2P(1-conf(p))

Snowball algorithm

1. Start with seed set R of tuples

2. Generate set P of patterns from R

� Compute support and confidence for each
pattern in P

� Discard patterns with low support or confidence

3. Generate new set T of tuples matching
patterns P

� Compute confidence of each tuple in T

4. Add to R the tuples t2T with
conf(t)>threshold.

5. Go back to step 2

Some refinements

� Give more weight to tuples found
earlier

� Approximate pattern matches

� Entity tagging

Tuple confidence

� If tuple t matches a set of patterns P

conf(t) = 1 - Πp2P(1-conf(p))

� Suppose we allow tuples that don’t
exactly match patterns but only
approximately

conf(t) = 1 - Πp2P(1-conf(p)match(t,p))

