
CS 345
Data Mining

Online algorithms

Search advertising

Online algorithms

� Classic model of algorithms

� You get to see the entire input, then
compute some function of it

� In this context, “offline algorithm”

� Online algorithm

� You get to see the input one piece at a
time, and need to make irrevocable
decisions along the way

� How is this different from the data
stream model?

Example: Bipartite matching

1

2

3

4

a

b

c

dGirls Boys

Example: Bipartite matching

1

2

3

4

a

b

c

d

M = {(1,a),(2,b),(3,d)} is a matching
Cardinality of matching = |M| = 3

Girls Boys

Example: Bipartite matching

1

2

3

4

a

b

c

dGirls Boys

M = {(1,c),(2,b),(3,d),(4,a)} is a
perfect matching

Matching Algorithm

� Problem: Find a maximum-cardinality
matching

� A perfect one if it exists

� There is a polynomial-time offline
algorithm (Hopcroft and Karp 1973)

� But what if we don’t have the entire
graph upfront?

Online problem

� Initially, we are given the set Boys

� In each round, one girl’s choices are
revealed

� At that time, we have to decide to
either:

� Pair the girl with a boy

� Don’t pair the girl with any boy

� Example of application: assigning
tasks to servers

Online problem

1

2

3

4

a

b

c

d

(1,a)

(2,b)

(3,d)

Greedy algorithm

� Pair the new girl with any eligible boy

� If there is none, don’t pair girl

� How good is the algorithm?

Competitive Ratio

� For input I, suppose greedy produces
matching Mgreedy while an optimal
matching is Mopt

Competitive ratio =

minall possible inputs I (|Mgreedy|/|Mopt|)

Analyzing the greedy algorithm

� Consider the set G of girls matched in Mopt but
not in Mgreedy

� Then it must be the case that every boy
adjacent to girls in G is already matched in
Mgreedy

� There must be at least |G| such boys

� Otherwise the optimal algorithm could not have
matched all the G girls

� Therefore

|Mgreedy| ¸ |G| = |Mopt - Mgreedy|

|Mgreedy|/|Mopt| ¸ 1/2

Worst-case scenario

1

2

3

4

a

b

c

(1,a)

(2,b)

d

History of web advertising

� Banner ads (1995-2001)

� Initial form of web advertising

� Popular websites charged X$ for every
1000 “impressions” of ad

� Called “CPM” rate

� Modeled similar to TV, magazine ads

� Untargeted to demographically tageted

� Low clickthrough rates

� low ROI for advertisers

Performance-based advertising

� Introduced by Overture around 2000

� Advertisers “bid” on search keywords

� When someone searches for that
keyword, the highest bidder’s ad is
shown

� Advertiser is charged only if the ad is
clicked on

� Similar model adopted by Google with
some changes around 2002

� Called “Adwords”

Ads vs. search results

Web 2.0

� Search advertising is the revenue
model

� Multi-billion-dollar industry

� Advertisers pay for clicks on their ads

� Interesting problems

� What ads to show for a search?

� If I’m an advertiser, which search terms
should I bid on and how much to bid?

Adwords problem

� A stream of queries arrives at the
search engine
� q1, q2,…

� Several advertisers bid on each query

� When query qi arrives, search engine
must pick a subset of advertisers
whose ads are shown

� Goal: maximize search engine’s
revenues

� Clearly we need an online algorithm!

Greedy algorithm

� Simplest algorithm is greedy

� It’s easy to see that the greedy
algorithm is actually optimal!

Complications (1)

� Each ad has a different likelihood of
being clicked

� Advertiser 1 bids $2, click probability =
0.1

� Advertiser 2 bids $1, click probability =
0.5

� Clickthrough rate measured historically

� Simple solution

� Instead of raw bids, use the “expected
revenue per click”

Complications (2)

� Each advertiser has a limited budget

� Search engine guarantees that the
advertiser will not be charged more than
their daily budget

Simplified model

� Assume all bids are 0 or 1

� Each advertiser has the same budget B

� Let’s try the greedy algorithm

� Arbitrarily pick an eligible advertiser for
each keyword

Bad scenario for greedy

� Two advertisers A and B

� A bids on query x, B bids on x and y

� Both have budgets of $4

� Query stream: xxxxyyyy

� Worst case greedy choice: BBBB____

� Optimal: AAAABBBB

� Competitive ratio = ½

� Simple analysis shows this is the worst
case

BALANCE algorithm [MSVV]

� [Mehta, Saberi, Vazirani, and Vazirani]

� For each query, pick the advertiser with
the largest unspent budget

� Break ties arbitrarily

Example: BALANCE

� Two advertisers A and B

� A bids on query x, B bids on x and y

� Both have budgets of $4

� Query stream: xxxxyyyy

� BALANCE choice: ABABBB__

� Optimal: AAAABBBB

� Competitive ratio = ¾

Analyzing BALANCE

� Consider simple case: two advertisers,
A1 and A2, each with budget B (assume
B À 1)

� Assume optimal solution exhausts both
advertisers’ budgets

Analyzing Balance

A1 A2

B

A1 A2 Unallocated

xy

B

A1 A2

x Opt revenue = 2B
Balance revenue = 2B-x = B+y

We have y ¸ x
Balance revenue is minimum for x=y=B/2
Minimum Balance revenue = 3B/2
Competitive Ratio = 3/4

General Result

� In the general case, worst
competitive ratio of BALANCE is
1–1/e = approx. 0.63

� Interestingly, no online algorithm has
a better competitive ratio

� Won’t go through the details here,
but let’s see the worst case that gives
this ratio

Worst case for BALANCE

� N advertisers, each with budget B À N À 1

� NB queries appear in N rounds of B queries each

� Round 1 queries: bidders A1, A2, …, AN

� Round 2 queries: bidders A2, A3, …, AN

� Round i queries: bidders Ai, …, AN

� Optimum allocation: allocate round i queries to
Ai

� Optimum revenue NB

BALANCE allocation

…

A1 A2 A3
AN-1 AN

B/N

B/(N-1)

B/(N-2)

The sum of the allocations to a bin k is given by:
Sk = min(B, ∑1· 1· kB/(N-i+1))

BALANCE analysis

B/1 B/2 B/3 B/4 … B/k … B/(N-1) B/N

A1

A2

An-k+1

BALANCE analysis

� Fact: Hn = ∑1· i· n1/i = approx. log(n)
for large n

� Result due to Euler

� So if Hk = log(N)-1, k=N/e

1/1 1/2 1/3 1/4 … 1/k … 1/(N-1) 1/N

log(N)

1log(N)-1

BALANCE analysis

� So after the first N(1-1/e) rounds, we
cannot allocate a query to any
advertiser

� Revenue = BN(1-1/e)

� Competitive ratio = 1-1/e

General version of problem

� MSVV also provides an algorithm for
the general case with arbitrary bids

� Same competitive ratio

Sidebar: What’s in a name?

� Geico sued Google, contending that it
owned the trademark “Geico”

� Thus, ads for the keyword geico couldn’t
be sold to others

� Court Ruling: search engines can sell
keywords including trademarks

� No court ruling yet: whether the ad
itself can use the trademarked
word(s)

